Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1537-1542.doi: 10.19799/j.cnki.2095-4239.2021.0493
• Energy Storage System and Engineering • Previous Articles Next Articles
Suhang WANG1(), Jianlin LI2(), Yaxin LI2, Junjie XIONG3, Wei ZENG3
Received:
2021-09-19
Revised:
2021-09-29
Online:
2022-05-05
Published:
2022-05-07
Contact:
Jianlin LI
E-mail:1158822549@qq.com;dkyljl@163.com
CLC Number:
Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature[J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542.
1 | 王苏杭, 李建林. 退役动力电池梯次利用研究进展[J]. 分布式能源, 2021, 6(2): 1-7. |
WANG S H, LI J L. Research progress on echelon utilization of retired power batteries[J]. Distributed Energy, 2021, 6(2): 1-7. | |
2 | 胡建成. 我国纯电动汽车发展概况及展望[J]. 南方农机, 2020, 51(22): 126-127. |
3 | 李建林, 李雅欣, 吕超, 等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化, 2020, 44(13): 172-183. |
LI J L, LI Y X, LYU C, et al. Key technology and research status of cascaded utilization in decommissioned power battery[J]. Automation of Electric Power Systems, 2020, 44(13): 172-183. | |
4 | 杨政威. 匹配纯电动汽车的无级变速器参数研究[J]. 时代汽车, 2021(17): 135-136. |
YANG Z W. Research on parameters of continuously variable transmissions matching pure electric vehicles[J]. Auto Time, 2021(17): 135-136. | |
5 | AJANOVIC A, HAAS R. Economic and environmental prospects for battery electric- and fuel cell vehicles: A review[J]. Fuel Cells, 2019, 19(5): 515-529. |
6 | 靳素芳, 胡芳芳, 房晓, 等. 新能源汽车严寒环境下充电性能测试研究[J]. 汽车实用技术, 2020(15): 13-14. |
JIN S F, HU F F, FANG X, et al. Research on charging performance test of new energy vehicles in severe cold environment[J]. Automobile Applied Technology, 2020(15): 13-14. | |
7 | 梁欣. 电动汽车锂离子电池低温性能研究[J]. 农业装备与车辆工程, 2020, 58(8): 118-121. |
LIANG X. Study on low temperature performance of Li-ion batteries for electric vehicles[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(8): 118-121. | |
8 | 韦连梅, 燕溪溪, 张素娜, 等. 锂离子电池低温电解液研究进展[J]. 储能科学与技术, 2017, 6(1): 69-77. |
WEI L M, YAN X X, ZHANG S N, et al. Progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2017, 6(1): 69-77. | |
9 | 徐智慧, 阮海军, 姜久春, 等. 温度自适应的锂离子电池低温自加热方法[J]. 电源技术, 2019, 43(12): 1989-1992, 2043. |
XU Z H, RUAN H J, JIANG J C, et al. Temperature-adaptive internal heating strategy for lithium ion battery at low temperature[J]. Chinese Journal of Power Sources, 2019, 43(12): 1989-1992, 2043. | |
10 | 王泰华, 张书杰, 陈金干. 锂离子电池低温充电老化建模及其充电策略优化[J]. 储能科学与技术, 2020, 9(4): 1137-1146. |
WANG T H, ZHANG S J, CHEN J G. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. | |
11 | 梅尊禹, 吴晓刚, 胡宸. 一种适用于低温环境的锂离子动力电池充电方法[J]. 汽车技术, 2018(6): 11-16. |
MEI Z Y, WU X G, HU C. A charging method of power Li-ion battery for low temperature[J]. Automobile Technology, 2018(6): 11-16. | |
12 | 尹安东, 赵韩, 周斌, 等. 基于行驶工况识别的纯电动汽车续驶里程估算[J]. 汽车工程, 2014, 36(11): 1310-1315. |
YIN A D, ZHAO H, ZHOU B, et al. Driving range estimation for battery electric vehicles based on driving cycle identification[J]. Automotive Engineering, 2014, 36(11): 1310-1315. | |
13 | 肖军. 新能源汽车低温电池热管理方法研究[J]. 汽车文摘, 2020(10): 34-40. |
XIAO J. Research on the battery heating methods of new energy vehicle in cold climate[J]. Automotive Digest, 2020(10): 34-40. | |
14 | 黄堪丰, 陈才敏, 李锦和. 基于涡流管技术的动力电池热管理系统研究[J]. 机床与液压, 2019, 47(19): 96-99. |
HUANG Kanfeng, CHEN Caimin, LIN Jinhe. Research on power battery thermal management system based on vortex tube technology[J]. Machine Tool & Hydraulics, 2019, 47(19): 96-99. | |
15 | 罗玉涛, 郎春艳, 罗卜尔思. 低温环境下锂离子电池组加热系统研究[J]. 华南理工大学学报(自然科学版), 2016, 44(9): 100-106. |
LUO Y T, LANG C Y, LUO B. Investigation into heating system of lithium-ion battery pack in low-temperature environment[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(9): 100-106. | |
16 | LEI S R, SHI Y, CHEN G Y. A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling[J]. Applied Thermal Engineering, 2020, 168: 114792. |
17 | 张祚铭, 李强伟, 张正杰, 等. 电动汽车用锂离子电池模组低温加热仿真研究[J]. 计算机仿真, 2021, 38(5): 85-89. |
ZHANG Z M, LI Q W, ZHANG Z J, et al. Pre-heating simulation of lithium-ion battery module for electric vehicles[J]. Computer Simulation, 2021, 38(5): 85-89. | |
18 | 马绪, 马天翼, 陈立铎, 等. 一种低温充电策略在电池系统层级的效果验证[J]. 电源技术, 2020, 44(3): 377-380. |
MA X, MA T Y, CHEN L D, et al. Effect verification test of a low temperature charging strategy at battery system level[J]. Chinese Journal of Power Sources, 2020, 44(3): 377-380. | |
19 | 焦红星, 张延星, 冯世杰. 新型动力电池低温加热策略[J]. 汽车工程师, 2021(8): 22-25, 29. |
JIAO H X, ZHANG Y X, FENG S J. A new low temperature heating strategy for power battery[J]. Automotive Engineer, 2021(8): 22-25, 29. |
[1] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[2] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[3] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[4] | CHANG Zeyu, ZHANG Zhiqi, ZHANG Xiaodong, LI Li, YU Yajuan. A data-driven state of health (SOH) assessment platform for vehicle power batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1847-1853. |
[5] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[6] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[7] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[8] | Xiaoyuan ZHANG, Jinhao ZHANG, Yajun JIANG. Power battery health evaluation based on improved TCN model [J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626. |
[9] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
[10] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. |
[11] | Jian HU, Chunjing LIN, Weijian HAO, Tianlei ZHENG. Current status and suggestions for the construction of power battery standard system [J]. Energy Storage Science and Technology, 2022, 11(1): 313-320. |
[12] | Yingkai WANG, Hong ZHANG, Xinghui WANG. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health [J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. |
[13] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[14] | Xinyu CAO, Fei PENG, Liwei LI, Jianguang YIN. SOC estimation of lithium battery based on IBAS-NARX neural network model [J]. Energy Storage Science and Technology, 2021, 10(6): 2342-2351. |
[15] | Feifei LIU, Rongqing BAO, Xianfu CHENG, Jun LI, Wu QIN, Chaofeng YANG. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions [J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||