Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2007-2022.doi: 10.19799/j.cnki.2095-4239.2022.0330
Previous Articles Next Articles
Xiaoyu SHEN(), Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG(
)
Received:
2022-06-16
Online:
2022-07-05
Published:
2022-06-29
Contact:
Xuejie HUANG
E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022)[J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022.
1 | GOONETILLEKE D, MAZILKIN A, WEBER D, et al. Single step synthesis of W-modified LiNiO2 using an ammonium tungstate flux[J]. Journal of Materials Chemistry A, 2022, 10(14): 7841-7855. |
2 | LIU C Y, XIE G M, XU Z Q, et al. Improved zero-charge storage performance of LiCoO2/mesocarbon microbead lithium-ion batteries by Li5FeO4 cathode additive[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16117-16124. |
3 | YANG X R, WANG C W, YAN P F, et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering[J]. Advanced Energy Materials, 2022, 12(23): doi: 10.1002/aenm. 202200197. |
4 | YE B, CAI M Z, XIE M, et al. Constructing robust cathode/electrolyte interphase for ultrastable 4.6 V LiCoO2 under -25 ℃[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19561-19568. |
5 | KIM D H, SONG J H, JUNG C H, et al. Stepwise dopant selection process for high-nickel layered oxide cathodes[J]. Advanced Energy Materials, 2022, 12(18): doi: 10.1002/aenm.202200136. |
6 | KIM Y S, KIM J H, SUN Y K, et al. Evolution of a radially aligned microstructure in boron-doped Li[Ni0.95Co0.04Al0.01]O2 cathode particles[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17500-17508. |
7 | NAMKOONG B, PARK N Y, PARK G T, et al. High-energy Ni-rich cathode materials for long-range and long-life electric vehicles[J]. Advanced Energy Materials, 2022, 12(21): doi: 10.1002/aenm.202200615. |
8 | CHENG Y, SUN Y, CHU C T, et al. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries[J]. Nano Research, 2022, 15(5): 4091-4099. |
9 | WANG L G, LEI X C, LIU T C, et al. Regulation of surface defect chemistry toward stable Ni-rich cathodes[J]. Advanced Materials, 2022, 34(19): doi: 10.1002/adma.202200744. |
10 | QIU L, SONG Y, ZHANG M K, et al. Structural reconstruction driven by oxygen vacancies in layered Ni-rich cathodes[J]. Advanced Energy Materials, 2022, 12(19): doi: 10.1002/aenm.202200022. |
11 | OU X, LIU T C, ZHONG W T, et al. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy[J]. Nature Communications, 2022, 13: 2319. |
12 | ZHANG L H, WANG S W, ZHU L, et al. Synthesis design of interfacial nanostructure for nickel-rich layered cathodes[J]. Nano Energy, 2022, 97: doi: 10.1016/j.nanoen.2022.107119. |
13 | PHAM H Q, KONDRACKI Ł, TARIK M, et al. Correlating the initial gas evolution and structural changes to cycling performance of Co-free Li-rich layered oxide cathode[J]. Journal of Power Sources, 2022, 527: doi: 10.1016/j.jpowsour.2022.231181. |
14 | GUO W, ZHANG Y, LIN L, et al. C materials by solid-liquid-gas integrated interface engineering[J]. Nano Energy, 2022, 97. |
15 | CHEN T C, WU H M, ZHOU D F, et al. The CeF4-coated spinel LiNi0.5Mn1.5O4 with improved electrochemical performance for 5 V lithium-ion batteries[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(15): 11712-11724. |
16 | LIU X, ZHANG T Y, SHI X X, et al. Hierarchical sulfide-rich modification layer on SiO/C anode for low-temperature Li-ion batteries[J]. Advanced Science, 2022: doi: 10.1002/advs.202104531. |
17 | LI D D, XIE C, GAO Y, et al. Inverted anode structure for long-life lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(18): doi: 10.1002/aenm.202200584. |
18 | LU G, NAI J, YUAN H, et al. In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode[J]. ACS Nano, 2022: doi: 10.1021/acsnano.2c04025. |
19 | HUANG M Z, HU T, ZHANG Y T, et al. In situ constructing a stable solid electrolyte interface by multifunctional electrolyte additive to stabilize lithium metal anodes for Li-S batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17959-17967. |
20 | DONG Q Y, HONG B, FAN H L, et al. A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode[J]. Energy Storage Materials, 2022, 45: 1220-1228. |
21 | LI C, LI Y, YU Y K, et al. One-pot preparation of lithium compensation layer, lithiophilic layer, and artificial solid electrolyte interphase for lean-lithium metal anode[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19437-19447. |
22 | QIAN S S, XING C, ZHENG M T, et al. CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes[J]. Advanced Energy Materials, 2022, 12(15): doi: 10.1002/aenm.202103480. |
23 | DI J, YANG J L, TIAN H, et al. Dendrites-free lithium metal anode enabled by synergistic surface structural engineering[J]. Advanced Functional Materials, 2022, 32(23): doi: 10.1002/adfm.202200474. |
24 | LI S M, HUANG J L, CUI Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes[J]. Nature Nanotechnology, 2022: 1-9. |
25 | LI Z H, DING X S, FENG W, et al. Aligned artificial solid electrolyte interphase layers as versatile interfacial stabilizers on lithium metal anodes[J]. Journal of Materials Chemistry A, 2022, 10(19): 10474-10483. |
26 | ZHANG D C, LIU Z B, WU Y W, et al. In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries[J]. Advanced Science, 2022, 9(12): doi: 10.1002/advs.202104277. |
27 | KIM M S, ZHANG Z W, RUDNICKI P E, et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries[J]. Nature Materials, 2022, 21(4): 445-454. |
28 | KIM Y, WALUYO I, HUNT A, et al. Avoiding CO2 improves thermal stability at the interface of Li7La3Zr2O12 electrolyte with layered oxide cathodes[J]. Advanced Energy Materials, 2022, 12(13): doi: 10.1002/aenm.202102741. |
29 | KIM S, KIM J S, MIARA L, et al. High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility[J]. Nature Communications, 2022, 13: 1883. |
30 | GIL-GONZÁLEZ E, YE L H, WANG Y C, et al. Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries[J]. Energy Storage Materials, 2022, 45: 484-493. |
31 | DAWSON J A, ISLAM M S. A nanoscale design approach for enhancing the Li-ion conductivity of the Li10GeP2S12 solid electrolyte[J]. ACS Materials Letters, 2022, 4(2): 424-431. |
32 | SINGER C, TÖPPER H C, KUTSCH T, et al. Hydrolysis of argyrodite sulfide-based separator sheets for industrial all-solid-state battery production[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24245-24254. |
33 | LIU S J, ZHOU L, HAN J, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202200660. |
34 | WANG Q T, LIU D X, MA X F, et al. Cl-doped Li10SnP2S12 with enhanced ionic conductivity and lower Li-ion migration barrier[J]. ACS Applied Materials & Interfaces, 2022, 14(19): 22225-22232. |
35 | AHMAD N, SUN S R, YU P W, et al. Design unique air-stable and Li-metal compatible sulfide electrolyte via exploration of anion functional units for all-solid-state lithium-metal batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202201528. |
36 | ZHOU L D, ZUO T T, KWOK C Y, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nature Energy, 2022, 7(1): 83-93. |
37 | LIU L, ZHANG D C, ZHAO J W, et al. Synergistic effect of lithium salts with fillers and solvents in composite electrolytes for superior room-temperature solid-state lithium batteries[J]. ACS Applied Energy Materials, 2022, 5(2): 2484-2494. |
38 | LIANG H P, ZARRABEITIA M, CHEN Z, et al. Polysiloxane-based single-ion conducting polymer blend electrolyte comprising small-molecule organic carbonates for high-energy and high-power lithium-metal batteries[J]. Advanced Energy Materials, 2022, 12(16): doi: 10.1002/aenm.202200013. |
39 | ZHANG K, WU F, WANG X R, et al. 8.5 µm-thick flexible-rigid hybrid solid-electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202200368. |
40 | CHANG Z, YANG H J, ZHU X Y, et al. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments[J]. Nature Communications, 2022, 13: 1510. |
41 | YOU Y X, LIANG X X, WANG P H, et al. Single-ion gel polymer electrolyte based on poly(ether sulfone) for high-performance lithium-ion batteries[J]. Macromolecular Materials and Engineering, 2022, 307(4): doi: 10.1002/mame. 2100791. |
42 | DEL OLMO R, MENDES T C, FORSYTH M, et al. Mixed ionic and electronic conducting binders containing PEDOT: PSS and organic ionic plastic crystals toward carbon-free solid-state battery cathodes[J]. Journal of Materials Chemistry A, 2022: doi: 10.1039/D1TA09628A. |
43 | ALVAREZ-TIRADO M, GUZMÁN-GONZÁLEZ G, VAUTHIER S, et al. Designing boron-based single-ion gel polymer electrolytes for lithium batteries by photopolymerization[J]. Macromolecular Chemistry and Physics, 2022, 223(8): doi: 10.1002/macp.202100407. |
44 | PEI X P, LI Y J, OU T, et al. Li-N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries[J]. Angewandte Chemie International Edition, 2022: doi: 10.1002/anie.202205075. |
45 | WANG A X, GENG S X, ZHAO Z F, et al. In situ cross-linked plastic crystal electrolytes for wide-temperature and high-energy-density lithium metal batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202201861. |
46 | LEI S, ZENG Z Q, LIU M C, et al. Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries[J]. Nano Energy, 2022, 98: doi: 10.1016/j.nanoen.2022.107265. |
47 | ZHAO Y, ZHOU T H, ASHIROV T, et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries[J]. Nature Communications, 2022, 13: 2575. |
48 | SONG D P, YANG Z W, ZHAO Q, et al. Dilute electrolyte to mitigate capacity decay and voltage fading of co-free Li-rich cathode for next-generation Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12264-12275. |
49 | ZHANG X Y, REN Y F, ZHANG J Y, et al. Synergistic effect of TMSPi and FEC in regulating the electrode/electrolyte interfaces in nickel-rich lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11517-11527. |
50 | BOULANGER T, ELDESOKY A, BUECHELE S, et al. Investigation of redox shuttle generation in LFP/graphite and NMC811/graphite cells[J]. Journal of the Electrochemical Society, 2022, 169(4): doi: 10.1149/1945-7111/ac62c6. |
51 | TAN S, SHADIKE Z, LI J, et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V[J]. Nature Energy, 2022: doi: 10.1038/s41560-022-01020-x. |
52 | DUAN K J, NING J R, ZHOU L, et al. Synergistic inorganic-organic dual-additive electrolytes enable practical high-voltage lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10447-10456. |
53 | TAN L J, CHEN S Q, CHEN Y W, et al. Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality[J]. Angewandte Chemie International Edition, 2022: doi: 10.1002/anie.202203693. |
54 | YANG J Z, RODRIGUES M T F, YU Z, et al. Design of a scavenging pyrrole additive for high voltage lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(4): doi: 10.1149/1.040507. |
55 | WANG Y, ZHANG Y J, DONG S Y, et al. An all-fluorinated electrolyte toward high voltage and long cycle performance dual-ion batteries[J]. Advanced Energy Materials, 2022, 12(19): doi: 10.1002/aenm.202270075. |
56 | LI X, LIU J D, HE J, et al. Separator-wetted, acid- and water-scavenged electrolyte with optimized Li-ion solvation to form dual efficient electrode electrolyte interphases via hexa-functional additive[J]. Advanced Science, 2022: doi: 10.1002/advs.202201297. |
57 | CHEN C, YAN X D, ZHANG L Z. Disiloxanes containing tertiary amine and dioxaborolane groups as bifunctional electrolyte additive for improved cycling life of LiNi0.8Co0.1Mn0.1O2/graphite batteries[J]. ChemElectroChem, 2022, 9(6): doi: 10.1002/celc.202101628. |
58 | LI F, LIU J D, HE J, et al. Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis[J]. Angewandte Chemie, 2022: doi: 10.1002/ange.202205091. |
59 | ZHANG L H, MIN F Q, LUO Y, et al. Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte[J]. Nano Energy, 2022, 96: doi: 10.1016/j.nanoen.2022.107122. |
60 | WU C J, WU Y, XU X D, et al. Synergistic dual-salt electrolyte for safe and high-voltage LiNi0.8Co0.1Mn0.1O2// graphite pouch cells[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10467-10477. |
61 | JI S J, WANG X J, LI K Z, et al. 3D vertically aligned microchannel three-layer all ceramic lithium ion battery for high-rate and long-cycle electrochemical energy storage[J]. Small, 2022, 18(13): doi: 10.1002/smll.202107442. |
62 | FU F, LIU Y, SUN C, et al. Unveiling and alleviating chemical "crosstalk" of succinonitrile molecules in hierarchical electrolyte for high-voltage solid-state lithium metal batteries[J]. Energy & Environmental Materials, 2022: doi: 10.1002/eem2.12367. |
63 | CAO D X, SUN X, LI Y J, et al. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes[J]. Advanced Materials, 2022: doi: 10.1002/adma.202200401. |
64 | HONG S B, LEE Y J, KIM U H, et al. All-solid-state lithium batteries: Li+-conducting ionomer binder for dry-processed composite cathodes[J]. ACS Energy Letters, 2022, 7(3): 1092-1100. |
65 | LI J, QI J Z, JIN F, et al. Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor[J]. Nature Communications, 2022, 13: 2031. |
66 | ZHOU X, ZHANG Y, SHEN M, et al. A highly stable Li-organic all-solid-state battery based on sulfide electrolytes[J]. Advanced Energy Materials, 2022, 12(14): doi: 10.1002/aenm.202103932. |
67 | ZHOU H Y, YAN S S, LI J, et al. Lithium bromide-induced organic-rich cathode/electrolyte interphase for high-voltage and flame-retardant all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24469-24479. |
68 | CAO X G, TAN D C, GUO Q L, et al. High-performance fully-stretchable solid-state lithium-ion battery with a nanowire-network configuration and crosslinked hydrogel[J]. Journal of Materials Chemistry A, 2022, 10(21): 11562-11573. |
69 | CAI M L, JIN J, XIU T P, et al. In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface[J]. Energy Storage Materials, 2022, 47: 61-69. |
70 | REN Y X, SHIN W, MANTHIRAM A. Operating high-energy lithium-metal pouch cells with reduced stack pressure through a rational lithium-host design[J]. Advanced Energy Materials, 2022, 12(19): doi: 10.1002/aenm.202200190. |
71 | XIONG B Q, CHEN S Q, LUO X, et al. Plastic monolithic mixed-conducting interlayer for dendrite-free solid-state batteries[J]. Advanced Science, 2022: doi: 10.1002/advs.202105924. |
72 | GUEON D, KIM T, LEE J, et al. Exploring the Janus structure to improve kinetics in sulfur conversion of Li-S batteries[J]. Nano Energy, 2022, 95: doi: 10.1016/j.nanoen.2022.106980. |
73 | ZOU K Y, ZHOU T F, CHEN Y Z, et al. Defect engineering in a multiple confined geometry for robust lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(18): doi: 10.1002/aenm.202103981. |
74 | SUN X, DA TIAN, SONG X Q, et al. In situ conversion to construct fast ion transport and high catalytic cathode for high-sulfur loading with lean electrolyte lithium-sulfur battery[J]. Nano Energy, 2022, 95: doi: 10.1016/j.nanoen.2022.106979. |
75 | REN Y, WANG M Y, YANG X Y, et al. Metal-porphyrin frameworks supported by carbon nanotubes: Efficient polysulfide electrocatalysts for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 437: doi: 10.1016/j.cej.2022.135150. |
76 | AO Z R, ZOU Y L, ZOU H Y, et al. Enhanced cycling performance of all-solid-state Li-S battery enabled by PVP-blended PEO-based double-layer electrolyte[J]. Chemistry-A European Journal, 2022: doi: 10.1002/chem.202200543. |
77 | DO V, LEE S H, JANG E, et al. Aqueous quaternary polymer binder enabling long-life lithium-sulfur batteries by multifunctional physicochemical properties[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19353-19364. |
78 | FAN X L, LIU Y Q, TAN J Y, et al. An ultrathin and highly efficient interlayer for lithium-sulfur batteries with high sulfur loading and lean electrolyte[J]. Journal of Materials Chemistry A, 2022, 10(14): 7653-7659. |
79 | BINTANG H M, LEE S, KIM J T, et al. Self-constructed intimate interface on a silicon anode enabled by a phase-convertible electrolyte for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 805-813. |
80 | GAUTAM M, MISHRA G K, AHUJA A, et al. Direct-contact prelithiation of Si-C anode study as a function of time, pressure, temperature, and the cell ideal time[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17208-17220. |
81 | LI S W, ZHAO T, WANG K, et al. Unveiling the stress-buffering mechanism of the deep lithiated Ag nanowires: A polymer segmental motion strategy toward the ultra-robust Li metal anode[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202203010. |
82 | SHEN B L, ZHANG H J, WU Y J, et al. Co3O4 quantum dot-catalyzed lithium oxalate as a capacity and cycle-life enhancer in lithium-ion full cells[J]. ACS Applied Energy Materials, 2022, 5(2): 2112-2120. |
83 | SHEN B L, SARKODIE B, ZHANG L, et al. Self-sacrificing lithium source with high electrochemical activity and water oxygen stability and its application in Si-C//S battery[J]. Energy Storage Materials, 2022, 45: 687-695. |
84 | ZOU C, HUANG Y, ZHAO L, et al. Mn2+ ions capture and uniform composite electrodes with PEI aqueous binder for advanced LiMn2O4-based battery[J]. ACS Applied Materials & Interfaces, 2022, 14(12): 14226-14234. |
85 | BRILLONI A, MARCHESINI F, POLI F, et al. Performance comparison of LMNO cathodes produced with pullulan or PEDOT: PSS water-processable binders[J]. Energies, 2022, 15(7): 2608. |
86 | LI X L, WANG Y L, CHEN Z, et al. Two-electron redox chemistry enabled high-performance iodide-ion conversion battery[J]. Angewandte Chemie International Edition, 2022, 61(9): doi: 10.1002/anie.202113576. |
87 | LI P, LI X L, GUO Y, et al. Highly thermally/electrochemically stable I-/I3 -bonded organic salts with high I content for long-life Li-I2 batteries[J]. Advanced Energy Materials, 2022, 12(15): doi: 10.1002/aenm.202103648. |
88 | ZHANG X H, CUI Z H, MANTHIRAM A. Insights into the crossover effects in cells with high-nickel layered oxide cathodes and silicon/graphite composite anodes[J]. Advanced Energy Materials, 2022, 12(14): doi: 10.1002/aenm.202103611. |
89 | KOMAGATA S, ITOU Y, KONDO H. Impact of surface layer formation during cycling on the thermal stability of the LiNi0.8Co0.1Mn0.1O2 cathode[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 8931-8937. |
90 | XU H Y, LI Z P, LIU T C, et al. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode[J]. Angewandte Chemie International Edition, 2022: doi: 10.1002/anie.202202894. |
91 | HAN B, LI X Y, WANG Q, et al. Cryo-electron tomography of highly deformable and adherent solid-electrolyte interphase exoskeleton in Li-metal batteries with ether-based electrolyte[J]. Advanced Materials, 2022, 34(13): doi: 10.1002/adma.202270101. |
92 | ZHOU M Y, FENG C, XIONG R Y, et al. Molecular insights into the structure and property variation of the pressure-induced solid electrolyte interphase on a lithium metal anode[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24875-24885. |
93 | CHO J H, KIM K, CHAKRAVARTHY S, et al. An investigation of chemo-mechanical phenomena and Li metal penetration in all-solid-state lithium metal batteries using in situ optical curvature measurements[J]. Advanced Energy Materials, 2022, 12(19): doi: 10.1002/aenm.202200369. |
94 | GAO Z H, BAI Y, FU H Y, et al. Interphase formed at Li6.4La3Zr1.4Ta0.6O12/Li interface enables cycle stability for solid-state batteries[J]. Advanced Functional Materials, 2022, 32(20): doi: 10.1002/adfm.202112113. |
95 | SUN F, WANG C, OSENBERG M, et al. Clarifying the electro-chemo-mechanical coupling in Li10SnP2S12 based all-solid-state batteries[J]. Advanced Energy Materials, 2022, 12(13): doi: 10.1002/aenm.202103714. |
96 | SEBTI E, EVANS H A, CHEN H N, et al. Stacking faults assist lithium-ion conduction in a halide-based superionic conductor[J]. Journal of the American Chemical Society, 2022, 144(13): 5795-5811. |
97 | DIENER A, IVANOV S, HASELRIEDER W, et al. Evaluation of deformation behavior and fast elastic recovery of lithium-ion battery cathodes via direct roll-gap detection during calendering[J]. Energy Technology, 2022, 10(4): doi: 10.1002/ente.202101033. |
98 | ZHANG P, HAN B, YANG X M, et al. Revealing the intrinsic atomic structure and chemistry of amorphous LiO2-containing products in Li-O2 batteries using cryogenic electron microscopy[J]. Journal of the American Chemical Society, 2022, 144(5): 2129-2136. |
99 | FANG H, JENA P. Argyrodite-type advanced lithium conductors and transport mechanisms beyond peddle-wheel effect[J]. Nature Communications, 2022, 13: 2078. |
100 | SU H, LIU Y, ZHONG Y, et al. Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries[J]. Nano Energy, 2022, 96: doi: 10.1016/j.nanoen.2022.107104. |
[1] | Dongmei SHI, Jing WANG. Analysis of battery technology and industry development strategy and trend in China, Japan, and South Korea [J]. Energy Storage Science and Technology, 2023, 12(2): 615-628. |
[2] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[3] | Mengyu TIAN, Yida WU, Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2022 to Nov. 30, 2022) [J]. Energy Storage Science and Technology, 2023, 12(1): 1-15. |
[4] | Kai ZHANG, Youlong XU. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. |
[5] | Mengyang ZU, Meng ZHANG, Zikun LI, Ling HUANG. Cycle performance and degradation mechanism of Ni-Rich NCA, NCM, and NCMA [J]. Energy Storage Science and Technology, 2023, 12(1): 51-60. |
[6] | Shaocong WANG, Wei LI, Ruiqin HUANG, Yifei GUO, Zheng LIU. Progress of the Jahn-Teller effect suppression method for manganese-based sodium-ion battery cathode materials [J]. Energy Storage Science and Technology, 2023, 12(1): 139-149. |
[7] | Wenshu ZHANG, Fangyuan HU, Hao HUANG, Xudong WANG, Man YAO. Sodium storage anode based on titanium-based MXene and its performance regulation mechanism [J]. Energy Storage Science and Technology, 2023, 12(1): 35-41. |
[8] | Jing ZHU, Yida WU, Junfeng HAO, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2022 to Jul. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(9): 3035-3050. |
[9] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[10] | Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state [J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865. |
[11] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[12] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[13] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[14] | Jianxin LU, Ying ZHANG, Chuyuan MA, Kang DENG, Chunying LEI. Study on fire-extinguishing performance of hydrogel on lithium-iron-phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2637-2644. |
[15] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||