Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1283-1294.doi: 10.19799/j.cnki.2095-4239.2022.0740
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Ni YANG1(), Yuefeng SU1,2(), Lian WANG1, Ning LI1,2, Liang MA2, Chen ZHU3
Received:
2022-12-12
Revised:
2023-01-01
Online:
2023-04-05
Published:
2023-01-30
Contact:
Yuefeng SU
E-mail:yangni_bitcit@163.com;suyuefeng@bit.edu.cn
CLC Number:
Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294.
1 | WOHLFAHRT-MEHRENS M, VOGLER C, GARCHE J. Aging mechanisms of lithium cathode materials[J]. Journal of Power Sources, 2004, 127(1/2): 58-64. |
2 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. |
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. | |
3 | 牟粤, 杜韫, 明海, 等. 锂离子电池正极材料本体结构演变及界面行为研究方法[J]. 储能科学与技术, 2021, 10(1): 7-26. |
MU Y, DU Y, MING H, et al. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. | |
4 | GIANNUZZI L A, STEVIE F A. Introduction to focused ion beams: Instrumentation, theory, techniques and practice[M]. Boston, MA: Springer US, 2005. |
5 | 顾文琪, 马向国, 李文萍. 聚焦离子束微纳加工技术[M]. 北京: 北京工业大学出版社, 2006: 15. |
GU W Q, MA X G, LI W P. Micro-nano processing technology of focused ion beam[M]. Beijing: Beijing University of Technology Press, 2006: 15. | |
6 | YAO N. Focused ion beam systems: Basics and applications[M]. Cambridge: Cambridge University Press, 2007. |
7 | MAIR G L R. Liquid metal ion sources and their applications[J]. International Journal of Mass Spectrometry and Ion Processes, 1992, 114(1/2): 1-21. |
8 | HORNSEY R. Simulations of the current and temperature dependence of liquid metal ion source energy distributions[J]. Japanese Journal of Applied Physics, 1991, 30(2R): 366. |
9 | MITTERAUER J. Miniaturized liquid metal ion sources (MILMIS)[J]. IEEE Transactions on Plasma Science, 1991, 19(5): 790-799. |
10 | BISCHOFF L, MAZAROV P, BRUCHHAUS L, et al. Liquid metal alloy ion sources—An alternative for focussed ion beam technology[J]. Applied Physics Reviews, 2016, 3(2): 021101. |
11 | 韩伟, 肖思群. 聚焦离子束(FIB)及其应用[J]. 中国材料进展, 2013, 32(12): 716-727, 751. |
HAN W, XIAO S Q. Focused ion beam (FIB) and its applications[J]. Materials China, 2013, 32(12): 716-727, 751. | |
12 | SONG S C, LI Y W, YANG K, et al. Interplay between multiple doping elements in high-voltage LiCoO2[J]. Journal of Materials Chemistry A, 2021, 9(9): 5702-5710. |
13 | ALMAR L, JOOS J, WEBER A, et al. Microstructural feature analysis of commercial Li-ion battery cathodes by focused ion beam tomography[J]. Journal of Power Sources, 2019, 427: 1-14. |
14 | BESNARD N, ETIEMBLE A, DOUILLARD T, et al. Lithium-ion batteries: Multiscale morphological and electrical characterization of charge transport limitations to the power performance of positive electrode blends for lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(8): doi: 10.1002/aenm.201770043. |
15 | SAILER S, MUNDSZINGER M, MARTIN J, et al. Quantitative FIB/SEM tomogram analysis of closed and open porosity of spheroidized graphite anode materials for LiBs applications[J]. Micron, 2023, 166: doi: 10.1016/j.micron.2022.103398. |
16 | KIM D, LEE S, HONG W, et al. Image segmentation for FIB-SEM serial sectioning of a Si/C-graphite composite anode microstructure based on preprocessing and global thresholding[J]. Microscopy and Microanalysis, 2019, 25(5): 1139-1154. |
17 | KROLL M, KARSTENS S L, CRONAU M, et al. Three-phase reconstruction reveals how the microscopic structure of the carbon-binder domain affects ion transport in lithium-ion batteries[J]. Batteries & Supercaps, 2021, 4(8): 1363-1373. |
18 | SUN Y K, YUAN Y B, LU L G, et al. A comprehensive research on internal short circuits caused by copper particle contaminants on cathode in lithium-ion batteries[J]. eTransportation, 2022, 13: doi: 10.1016/j.etran.2022.100183. |
19 | VANPEENE V, SOUCY P, XIONG J H, et al. Sequential focused ion beam scanning electron microscopy analyses for monitoring cycled-induced morphological evolution in battery composite electrodes. Silicon-graphite electrode as exemplary case[J]. Journal of Power Sources, 2021, 498: doi: 10.1016/j.jpowsour.2021.229904 |
20 | WIEDEMANN A H, GOLDIN G M, BARNETT S A, et al. Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes[J]. Electrochimica Acta, 2013, 88: 580-588. |
21 | ALLEN J M, WEDDLE P J, VERMA A, et al. Quantifying the influence of charge rate and cathode-particle architectures on degradation of Li-ion cells through 3D continuum-level damage models[J]. Journal of Power Sources, 2021, 512: doi: 10.1016/j.jpowsour.2021.230415. |
22 | WU L M, WEN Y H, ZHANG J. Three-dimensional finite element study on Li diffusion induced stress in FIB-SEM reconstructed LiCoO2 half cell[J]. Electrochimica Acta, 2016, 222: 814-820. |
23 | XU H Y, ZHU J E, FINEGAN D P, et al. Guiding the design of heterogeneous electrode microstructures for Li-ion batteries: Microscopic imaging, predictive modeling, and machine learning[J]. Advanced Energy Materials, 2021, 11(19): doi: 10.1016/aenm.2021.2003908. |
24 | SHIN S, KIM H, MAIYALAGAN T, et al. Sophisticated 3D microstructural reconstruction for numerical analysis of electrolyte imbibition in Li-ion battery separator and anode[J]. Materials Science and Engineering: B, 2022, 284: doi: 10.1016/j.mseb.2022.115878. |
25 | LAGADEC M F, ZAHN R, WOOD V. Designing polyolefin separators to minimize the impact of local compressive stresses on lithium ion battery performance[J]. Journal of the Electrochemical Society, 2018, 165(9): A1829-A1836. |
26 | PAN Z X, ZHU J E, XU H Y, et al. Microstructural deformation patterns of a highly orthotropic polypropylene separator of lithium-ion batteries: Mechanism, model, and theory[J]. Extreme Mechanics Letters, 2020, 37: doi: 10.1016/j.eml.2020.100705. |
27 | ZHANG Z Y, WANG X R, BAI Y, et al. Charactering and optimizing cathode electrolytes interface for advanced rechargeable batteries: Promises and challenges[J]. Green Energy & Environment, 2022, 7(4): 606-635. |
28 | WU Y, FENG X N, LIU X, et al. In-built ultraconformal interphases enable high-safety practical lithium batteries[J]. Energy Storage Materials, 2021, 43: 248-257. |
29 | LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
30 | WANG X F, ZHANG M H, ALVARADO J, et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM[J]. Nano Letters, 2017, 17(12): 7606-7612. |
31 | CHENG D Y, LU B Y, RAGHAVENDRAN G, et al. Leveraging cryogenic electron microscopy for advancing battery design[J]. Matter, 2022, 5(1): 26-42. |
32 | LEE J Z, WYNN T A, SCHROEDER M A, et al. Cryogenic focused ion beam characterization of lithium metal anodes[J]. ACS Energy Letters, 2019, 4(2): 489-493. |
33 | YANG Y, DAVIES D M, YIN Y J, et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes[J]. Joule, 2019, 3(8): 1986-2000. |
34 | YANG Y, YIN Y J, DAVIES D M, et al. Liquefied gas electrolytes for wide-temperature lithium metal batteries[J]. Energy & Environmental Science, 2020, 13(7): 2209-2219. |
35 | CHENG D Y, WYNN T A, WANG X F, et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy[J]. Joule, 2020, 4(11): 2484-2500. |
36 | ASENATH-SMITH E, HOVDEN R, KOURKOUTIS L F, et al. Hierarchically structured hematite architectures achieved by growth in a silica hydrogel[J]. Journal of the American Chemical Society, 2015, 137(15): 5184-5192. |
37 | ASENATH-SMITH E, LI H Y, KEENE E C, et al. Crystal growth of calcium carbonate in hydrogels as a model of biomineralization[J]. Advanced Functional Materials, 2012, 22(14): 2891-2914. |
38 | ASENATH-SMITH E, ESTROFF L A. Role of akaganeite (β-FeOOH) in the growth of hematite (α-Fe2O3) in an inorganic silica hydrogel[J]. Crystal Growth & Design, 2015, 15(7): 3388-3398. |
39 | ZACHMAN M J, ASENATH-SMITH E, ESTROFF L A, et al. Site-specific preparation of intact solid-liquid interfaces by label-free in situ localization and cryo-focused ion beam lift-out[J]. Microscopy and Microanalysis, 2016, 22(6): 1338-1349. |
40 | ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349. |
41 | SASAKI T, GODBOLE V, TAKEUCHI Y, et al. Morphological and structural changes of Mg-substituted Li(Ni, Co, Al)O2 during overcharge reaction[J]. Journal of the Electrochemical Society, 2011, 158(11): A1214. |
42 | YOON W S, CHUNG K Y, MCBREEN J, et al. Electronic structural changes of the electrochemically Li-ion deintercalated LiNi0.8Co0.15Al0.05O2 cathode material investigated by X-ray absorption spectroscopy[J]. Journal of Power Sources, 2007, 174(2): 1015-1020. |
43 | LEWANDOWSKI A, ŚWIDERSKA-MOCEK A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies[J]. Journal of Power Sources, 2009, 194(2): 601-609. |
44 | MILLER D, PROFF C, WEN J, et al. Direct observation of microstructural evolution in Li battery cathode oxide particles during electrochemical cycling by in situ electron microscopy[J]. Microscopy and Microanalysis, 2012, 18(S2): 1108-1109. |
45 | ZHOU X W, LI T Y, CUI Y, et al. In situ focused ion beam scanning electron microscope study of microstructural evolution of single tin particle anode for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 1733-1738. |
46 | TSAI P C, WEN B H, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy & Environmental Science, 2018, 11(4): 860-871. |
47 | TOJO T, KAWASHIRI S, TSUDA T, et al. Electrochemical performance of single Li4Ti5O12 particle for lithium ion battery anode[J]. Journal of Electroanalytical Chemistry, 2019, 836: 24-29. |
48 | INADA R, KUMASAKA R, INABE S, et al. Li+ Insertion/extraction properties for TiNb2O7 single particle characterized by a particle-current collector integrated microelectrode[J]. Journal of the Electrochemical Society, 2018, 166(3): A5157-A5162. |
49 | YOJI S, SHUHEI K, MASAHIRO U, et al. Electrochemical characterization of Li4Ti5O12 by single particle measurements using a particle-current collector integrated microelectrode[J]. Meeting Abstracts, 2015, (6): 496. |
50 | SUI T, SONG B H, DLUHOS J, et al. Nanoscale chemical mapping of Li-ion battery cathode material by FIB-SEM and TOF-SIMS multi-modal microscopy[J]. Nano Energy, 2015, 17: 254-260. |
51 | SCIPIONI R, ISHEIM D, BARNETT S A. Revealing the complex layered-mosaic structure of the cathode electrolyte interphase in Li-ion batteries[J]. Applied Materials Today, 2020, 20: doi: 10.1016/j.apmt.2020.100748. |
[1] | Jinhua SONG, Xinghao ZHANG, Zhenhe FENG, Guangyu CHENG, Honghui GU, Haitao GU, Ke WANG. Degradation mechanisms of SiO x -C composite anode based on in situ reference electrode [J]. Energy Storage Science and Technology, 2023, 12(4): 1059-1065. |
[2] | Liyue HU, Xingyan YAO. Thermal runaway of lithium-ion batteries based on orthogonal test [J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. |
[3] | Pengkai WANG, Xinyan ZHANG, Guanghao ZHANG. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model [J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. |
[4] | Zhi ZHAI, Fujin WANG, Yi DI, Peiyu MA, Zhibin ZHAO, Xuefeng CHEN. Hierarchical alignment transfer learning for lithium-ion battery capacity estimation [J]. Energy Storage Science and Technology, 2023, 12(4): 1223-1233. |
[5] | Xueli CHENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance [J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074. |
[6] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[7] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[8] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[9] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[10] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[11] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[12] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[13] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[14] | Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. |
[15] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||