Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1018-1024.doi: 10.19799/j.cnki.2095-4239.2022.0772
• Energy Storage Materials and Devices • Previous Articles Next Articles
Shun ZHANG(), Fanglei ZENG(), Ning LI, Ningyi YUAN
Received:
2022-12-29
Revised:
2023-01-22
Online:
2023-04-05
Published:
2023-02-01
Contact:
Fanglei ZENG
E-mail:zhang1589695316@163.com;fanglei_zeng0802@163.com
CLC Number:
Shun ZHANG, Fanglei ZENG, Ning LI, Ningyi YUAN. Study on the preparation and properties of high-flame retardant sulfur cathode[J]. Energy Storage Science and Technology, 2023, 12(4): 1018-1024.
1 | CHEN D, YANG R, CHEN L P, et al. One-pot fabrication of nitrogen and sulfur dual-doped graphene/sulfur cathode via microwave assisted method for long cycle-life lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2018, 746: 116-124. |
2 | YANG Y, ZHENG G Y, CUI Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032. |
3 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
4 | HE J R, LUO L, CHEN Y F, et al. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(34): doi: 10.1002/adma.201702707. |
5 | HE J R, CHEN Y F, MANTHIRAM A. Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries[J]. Advanced Energy Materials, 2019, 9(20): doi: 10.1002/aenm.201900584. |
6 | HE J R, BHARGAV A, YAGHOOBNEJAD ASL H, et al. 1T'-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li-S batteries[J]. Advanced Energy Materials, 2020, 10(23): doi: 10.1002/aenm.202001017. |
7 | SUN Z X, VIJAY S, HEENEN H H, et al. Catalytic polysulfide conversion and physiochemical confinement for lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(22): doi:10.1002/aenm.201904010. |
8 | FU X W, SCUDIERO L, ZHONG W H. A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(4): 1835-1848. |
9 | WANG H, WANG Y Y, ZHENG P T, et al. Self-healing double-cross-linked supramolecular binders of a polyacrylamide-grafted soy protein isolate for Li-S batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12799-12808. |
10 | FAN L L, LI M, LI X F, et al. Interlayer material selection for lithium-sulfur batteries[J]. Joule, 2019, 3(2): 361-386. |
11 | CHEN P, FU Y S, WU Z, et al. Labyrinth-inspired nitrogen-sulfur co-doped reduced holey graphene oxide/carbonized cellulose paper: A permselective and multifunctional interlayer for high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2019, 434: doi: 10.1016/j.jpowsour.2019.226. |
12 | ZHANG H, ESHETU G G, JUDEZ X, et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives[J]. Angewandte Chemie (International Ed in English), 2018, 57(46): 15002-15027. |
13 | SHI P C, LIANG X, XU K, et al. Sulfone-assisted-NH4I as electrolyte additive with synergistic dissolution and catalysis effects on reducing the activation voltage of Li2S cathode[J]. Chemical Engineering Journal, 2020, 398: doi: 10.1016/j.cej.2020.125608. |
14 | WANG D D, LIU H D, LI M Q, et al. A long-lasting dual-function electrolyte additive for stable lithium metal batteries[J]. Nano Energy, 2020, 75: doi: j.nanoen.2020.104889. |
15 | CHEN W J, ZHAO C X, LI B Q, et al. A mixed ether electrolyte for lithium metal anode protection in working lithium-sulfur batteries[J]. Energy & Environmental Materials, 2020, 3(2): 160-165. |
16 | LONG M C, WU G, WANG X L, et al. Self-adaptable gel polymer electrolytes enable high-performance and all-round safety lithium ion batteries[J]. Energy Storage Materials, 2022, 53: 62-71. |
17 | DENG K R, GUAN T Y, LIANG F H, et al. Flame-retardant single-ion conducting polymer electrolytes based on anion acceptors for high-safety lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(12): 7692-7702. |
18 | OH J, LEE H S, KIM M P, et al. A trade-off-free fluorosulfate-based flame-retardant electrolyte additive for high-energy lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(41): 21933-21940. |
19 | SUN Y Z, HUANG J Q, ZHAO C Z, et al. A review of solid electrolytes for safe lithium-sulfur batteries[J]. Science China Chemistry, 2017, 60(12): 1508-1526. |
20 | ZHANG W Y, BARRIO J, GERVAIS C, et al. Synthesis of carbon-nitrogen-phosphorous materials with an unprecedented high amount of phosphorous toward an efficient fire-retardant material[J]. Angewandte Chemie (International Ed in English), 2018, 57(31): 9764-9769. |
21 | QIU S L, ZHOU Y F, ZHOU X, et al. Air-stable polyphosphazene-functionalized few-layer black phosphorene for flame retardancy of epoxy resins[J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(10): doi: 10.1002/smll.201805175. |
22 | CHEN W, LEI T Y, WU C Y, et al. Designing safe electrolyte systems for a high-stability lithium-sulfur battery[J]. Advanced Energy Materials, 2018, 8(10): doi: 10.1002/aenm.201702348. |
23 | YEŞILOT S, KÜÇÜKKÖYLÜ S, MUTLU T, et al. Halogen-free polyphosphazene-based flame retardant cathode materials for Li-S batteries[J]. Energy Technology, 2021, 9(12): doi:10.1002/ente.202100563. |
24 | CHEN P, WU Z, GUO T, et al. Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium-sulfur batteries with enhanced safety and electrochemical performance[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(9): doi: 10.1002/adma.202007549. |
[1] | Yuqi SUN, Feng WEI, Hong ZHOU, Chaofeng ZHOU. Analysis of global lithium-sulfur battery technology competition from the perspective of patent [J]. Energy Storage Science and Technology, 2022, 11(5): 1657-1666. |
[2] | Bin XIE, Jia'nan SUN. Development of high specific energy lithium-sulfur cell module based on mechanical simulations [J]. Energy Storage Science and Technology, 2021, 10(2): 586-597. |
[3] | Tingting ZHAI, Zhonggang HAN, Zeming YUAN, Yanghuan ZHANG. The influence of ball milling time on the microstructure and electrochemical properties of TiFe-type alloy [J]. Energy Storage Science and Technology, 2021, 10(1): 163-169. |
[4] | YE Ge, YUAN Hong, ZHAO Chenzi, ZHU Gaolong, XU Lei, HOU Lipeng, CHENG Xinbing, HE Chuanxin, NAN Haoxiong, LIU Quanbin, HUANG Jiaqi, ZHANG Qiang. Balance between ion migration and electron transport in composite cathodes for all-solid-state lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 339-345. |
[5] | WU Shijia, XIAO Xiang, WANG Chao, ZHONG Guobin, LI Xin, ZHENG Chao, RUAN Dianbo. Effect of high temperature heat treatment on electrochemical properties of three-dimensional porous graphene [J]. Energy Storage Science and Technology, 2020, 9(1): 65-69. |
[6] | LIU Tao, QIU Daping, XIA Jiannian, DENG Jiahong, CHEN Zhiyu, WEI Jinying, LI Min, YANG Ru. Structure and properties of cathode materials for ion batteries [J]. Energy Storage Science and Technology, 2019, 8(S1): 1-17. |
[7] | MA Yanmei. Recent research progress of metal sulfides as anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(3): 488-494. |
[8] | YAO Lin, ZHOU Ling, LI Shixiong, LI Xiaomin, HE Kai, HE Qingquan, ZAI Jiantao, REN Qizhi, QIAN Xuefeng. Edge-rich MoS2 nanosheets for high performance self-supporting Li-S batteries [J]. Energy Storage Science and Technology, 2019, 8(3): 523-531. |
[9] | HU Cejun, YANG Jijin, WANG Hangchao, CHEN Yifan, ZHANG Rongrong, LIU Wen, SUN Xiaoming. Research progress of safe lithium sulfur batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1082-1093. |
[10] | ZHU JiHua, YANG Qianyun, LIU Zhiting, YANG Wei, CHEN Yao, YU Xinwei, ZHANG Qing. Synthesis and supercapacitor performance of spiro quaternary ammonium tetrafluoroborate [J]. Energy Storage Science and Technology, 2018, 7(2): 294-300. |
[11] | PEI Haijuan, GUO Rui, LI Yong, LIU Wen, CHEN Zhujun, WANG Yong, XIE Jingying. Conductive carbon-coated separator for high sulfur-loading lithium sulfur batteries [J]. Energy Storage Science and Technology, 2018, 7(1): 56-. |
[12] | YAN Changqing, CAO Yong. Patent analysis of lithium-sulfur battery technology in China [J]. Energy Storage Science and Technology, 2017, 6(S1): 74-. |
[13] | ZHAO Meng, XU Rui, HUANG Jiaqi, ZHANG Qiang. Flexible cathodes for lithium sulfur battery: A review [J]. Energy Storage Science and Technology, 2017, 6(3): 360-379. |
[14] | SHANG Yongliang1, WANG Chengwen1, LIU Bin1, LIU Jun1,2, KE Xi1,2, LIU Liying1,2, SHI Zhicong1,2. Preparation and properties of manganese dioxide coated carbon nanotubes-sulfur composite cathode material [J]. Energy Storage Science and Technology, 2017, 6(3): 411-417. |
[15] | XU Rui1, ZHAO Meng1, HUANG Jiaqi1,2. Progress in composite separators for lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 433-450. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||