Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (8): 2575-2584.doi: 10.19799/j.cnki.2095-4239.2023.0119
• Energy Storage System and Engineering • Previous Articles Next Articles
Chenchen DONG(), Dashuai SUN(), Jinglong WANG
Received:
2023-03-07
Revised:
2023-04-21
Online:
2023-08-05
Published:
2023-08-23
Contact:
Dashuai SUN
E-mail:dcc@sermatec-ess.com;sds@sermatec-ess.com
CLC Number:
Chenchen DONG, Dashuai SUN, Jinglong WANG. Battery high-voltage fault early warning based on improved online migration learning algorithm[J]. Energy Storage Science and Technology, 2023, 12(8): 2575-2584.
1 | FINEGAN D P, ZHU J E, FENG X N, et al. The application of data-driven methods and physics-based learning for improving battery safety[J]. Joule, 2021, 5(2): 316-329. |
2 | ZHU Y, LIU M Y, WANG L, et al. Potential failure prediction of lithium-ion battery energy storage system by isolation density method[J]. Sustainability, 2022, 14(12): 7048-7058. |
3 | LI D, ZHANG Z S, LIU P, et al. Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1303-1315. |
4 | DUBARRY M, BECK D. Big data training data for artificial intelligence-based Li-ion diagnosis and prognosis[J]. Journal of Power Sources, 2020, 479: doi: 10.1016/j.jpowsour.2020.228806. |
5 | HU X S, ZHANG K, LIU K L, et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91. |
6 | ZHAO J Y, LING H P, WANG J B, et al. Data-driven prediction of battery failure for electric vehicles[J]. iScience, 2022, 25(4): doi: 10.1016/j.isci.2022.104172. |
7 | 王志福, 罗崴, 闫愿, 等. 基于GAPSO-FNN神经网络的锂离子电池传感器故障诊断[J]. 储能科学与技术, 2023, 12(2): 602-608. |
WANG Z F, LUO W, YAN Y, et al. Fault diagnosis of lithium ion battery sensor based on GAPSO-FNN neural network[J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. | |
8 | ZHANG Y Z, WIK T, BERGSTRÖM J, et al. A machine learning-based framework for online prediction of battery ageing trajectory and lifetime using histogram data[J]. Journal of Power Sources, 2022, 526: doi: 10.1016/j.jpowsour.2022.231110. |
9 | MAO W T, DING L, TIAN S Y, et al. Online detection for bearing incipient fault based on deep transfer learning[J]. Measurement, 2020, 152: doi: 10.1016/j.measurement.2019.107278. |
10 | RUAN H K, WEI Z B, SHANG W T, et al. Artificial Intelligence-based health diagnostic of lithium-ion battery leveraging transient stage of constant current and constant voltage charging[J]. Applied Energy, 2023, 336: doi: 10.1016/j.apenergy.2023.120751. |
11 | VON BÜLOW F, MEISEN T. State of health forecasting of heterogeneous lithium-ion battery types and operation enabled by transfer learning[J]. PHM Society European Conference, 2022, 7(1): 490-508. |
12 | CHE Y H, DENG Z W, LIN X K, et al. Predictive battery health management with transfer learning and online model correction[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1269-1277. |
13 | ODENA A. Semi-supervised learning with generative adversarial networks[EB/OL]. 2016: arXiv: 1606.01583. https: //arxiv.org/abs/1606.01583 |
14 | HE J P, MAO R Y, SHAO Z M, et al. Incremental learning in online scenario[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 13923-13932. |
15 | VAN DE VEN G M, TUYTELAARS T, TOLIAS A S. Three types of incremental learning[J]. Nature Machine Intelligence, 2022, 4(12): 1185-1197. |
16 | ZHAO P L, HOI S C H, WANG J L, et al. Online transfer learning[J]. Artificial Intelligence, 2014, 216: 76-102. |
17 | WU Q Y, ZHOU X M, YAN Y G, et al. Online transfer learning by leveraging multiple source domains[J]. Knowledge and Information Systems, 2017, 52(3): 687-707. |
18 | HUANG S J, CAI N G, PACHECO P P, et al. Applications of support vector machine (SVM) learning in cancer genomics[J]. Cancer Genomics & Proteomics, 2018, 15(1): 41-51. |
19 | LIU K L, HU X S, ZHOU H Y, et al. Feature analyses and modeling of lithium-ion battery manufacturing based on random forest classification[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 2944-2955. |
20 | CRAMMER K, DEKEL O, KESHET J, et al. Online passive aggressive algorithms[J]. Journal of Machine Learning Research, 2006, 7(1): 551-585. |
21 | JIANG J C, LI T Y, CHANG C, et al. Fault diagnosis method for lithium-ion batteries in electric vehicles based on isolated forest algorithm[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104177. |
22 | KRSTINIĆ D, BRAOVIĆ M, ŠERIĆ L, et al. Multi-label classifier performance evaluation with confusion matrix[C]// Computer Science & Information Technology. AIRCC Publishing Corporation, 2020: doi:10.5121/csit.2020.100801. |
23 | LI Y H, WANG N Y, SHI J P, et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80: 109-117. |
[1] | Yonghao HUANG, Guojing ZANG, Weiya ZHU, Youhao LIAO, Weishan LI. Enhancing interfacial stability between lithium-containing ceramic separator and 4.35 V LiNi0.8Co0.1Mn0.1O2 cathode through LiF additives [J]. Energy Storage Science and Technology, 2023, 12(8): 2361-2369. |
[2] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[3] | Yu HAN, Shengling CAO, Jing NING, Kangli WANG, Kai JIANG, Min ZHOU. Strategies for interfacial modification in lithium metal batteries with polymers [J]. Energy Storage Science and Technology, 2023, 12(8): 2491-2503. |
[4] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
[5] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[6] | Ming LI, Jinyuan XIE, Muchu QIU, Liang SHAO, Qiang HUO. Research on balanced thermal management and energy saving of energy storage system based on planning curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2585-2593. |
[7] | Yun DI, Zhengzhu ZHOU, Huihong DANG, Zhihao GE. Modeling and verification of electric-thermal coupling in batteries based on ECM [J]. Energy Storage Science and Technology, 2023, 12(8): 2638-2648. |
[8] | Guangjin ZHAO, Bowen LI, Yuxia HU, Ruifeng DONG, Fangfang WANG. Overview of the echelon utilization technology and engineering application of retired power batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2319-2332. |
[9] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[10] | Lei ZONG, Long CHEN, Feng ZHU, Guogang LIU, Yaqing SUN, Haishu DONG. Testing and analysis of safety characteristic-parameter thresholds for power batteries under different conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2271-2281. |
[11] | Lingxuan LI, Zixuan WANG, Chenzi ZHAO, Rui ZHANG, Yang LU, Jiaqi HUANG, Aibing CHEN, Qiang ZHANG. A review of numerical models for composite lithium metal anodes [J]. Energy Storage Science and Technology, 2023, 12(7): 2059-2078. |
[12] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
[13] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[14] | Minghu WU, Chengpeng YUE, Fan ZHANG, Junxiao LI, Wei HUANG, Sheng HU, Jing TANG. Combined GRU-MLR method for predicting the remaining useful life of lithium batteries via multiscale decomposition [J]. Energy Storage Science and Technology, 2023, 12(7): 2220-2228. |
[15] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||