Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 3042-3058.doi: 10.19799/j.cnki.2095-4239.2024.0576
Previous Articles Next Articles
Dinghong LIU1,2(), Wenkai DONG1,2, Zhaoyang LI1,2, Hongzhu ZHANG1,2, Xin QI1,2
Received:
2024-06-25
Revised:
2024-07-31
Online:
2024-09-28
Published:
2024-09-20
Contact:
Dinghong LIU
E-mail:807901357@qq.com
CLC Number:
Dinghong LIU, Wenkai DONG, Zhaoyang LI, Hongzhu ZHANG, Xin QI. Estimation of real-vehicle battery state of health using the RUN-GRU-attention model[J]. Energy Storage Science and Technology, 2024, 13(9): 3042-3058.
Table 1
Comparison of capacity data evaluation indicators under different calculation methods"
方案 | 样本数目 | 极差 | 四方位差 | 与累积里程的回归模型 | R2 |
---|---|---|---|---|---|
ΔSOC≥15 | 291 | 0.334 | 0.0666 | y=-1.62×10-7x+1.4738 | 0.4185 |
ΔSOC≥30 | 233 | 0.2665 | 0.0621 | y=-1.59×10-7x+1.4653 | 0.3817 |
ΔSOC≥45 | 173 | 0.2665 | 0.0578 | y=-1.77×10-7x+1.4806 | 0.4395 |
ΔSOC≥60 | 119 | 0.1858 | 0.0557 | y=-1.74×10-7x+1.4690 | 0.5100 |
Ⅰ阶段 | 148 | 0.1653 | 0.0495 | y=-1.73×10-7x+1.2994 | 0.6985 |
Ⅱ阶段 | 170 | 0.1747 | 0.0572 | y=-2.46×10-7x+1.3155 | 0.6367 |
Ⅲ阶段 | 83 | 0.4379 | 0.1782 | — | — |
Ⅳ阶段 | 52 | 1.7872 | 0.1819 | — | — |
Table 4
Comparison of SOH estimation results based on different capacity calculation methods"
模型类型 | 容量样本计算 | 总样本数目/个 | MAE | MAPE | RSME | R2 |
---|---|---|---|---|---|---|
方案1 | 限制SOC在60%~75%(ΔSOC=15%) | 181 | 0.0159 | 0.0181 | 0.0192 | 0.6225 |
方案2 | 限制SOC在35%~65%(ΔSOC=30%) | 149 | 0.0137 | 0.0148 | 0.0165 | 0.6816 |
方案3 | 限制SOC在30%~90%(vSOC=60%) | 98 | 0.0163 | 0.0198 | 0.0217 | 0.5799 |
方案4 | 本文提出容量计算方法 | 318 | 0.0071 | 0.0075 | 0.0084 | 0.9210 |
Table 5
Raw data information and model parameters"
数据项目 | 1#数据集 | 2#数据集 | |
---|---|---|---|
累计行驶里程 | 58853.7 km | 150513.3 km | |
阶梯电流大小 | 110 A-97 A-46 A-14 A | 115 A-102 A-44 A-13 A | |
有效充电样本数目 | 318(包含Ⅰ阶段148个,Ⅱ阶段170个) | 1587(包含Ⅰ阶段853,Ⅱ阶段734个) | |
attention层 | 自注意力模式,注意力头数为2,键-查询-值通道数为2 | ||
隐藏节点数,初始学习率,正则化系数最优组合 | RUN | (52,1.0577×10-6,0.0771) | (58,1.3682×10-6,0.0594) |
SMA | (56,0.9493×10-6,0.0596) | (49,1.1034v,0.0326) | |
AVOA | (31,8.0211×10-7,0.0042) | (42,0.9213×10-6,0.0467) | |
LSTM/GRU网络 | 最大训练次数300,梯度阈值为0.81,自适应学习率为分段常数衰减模式 学习率下降周期为120 | ||
运行环境 | AMD Ryzen 77840H with Radeon 780M Graphics 3.80 GHz 处理器和32.00GB RAM 的计算机,MATLAB R2023a |
Table 6
SOH evaluation errors comparison of single-stage current samples using different models"
数据集 | 模型类型 | MAE | MAPE | RSME | 测试集R2 | 运行时长/s |
---|---|---|---|---|---|---|
1# | LSTM | 0.0201 | 0.0214 | 0.0238 | 0.6629 | 9.928 |
GRU | 0.0151 | 0.0161 | 0.0191 | 0.7178 | 3.624 | |
GRU-attention | 0.0115 | 0.0122 | 0.0150 | 0.8162 | 4.697 | |
AVOA-GRU-attention | 0.0112 | 0.0117 | 0.0137 | 0.8495 | 361.224 | |
SMA-GRU-attention | 0.0090 | 0.0096 | 0.0113 | 0.8977 | 468.216 | |
RUN-GRU-attention | 0.0071 | 0.0075 | 0.0084 | 0.9210 | 274.612 | |
2# | LSTM | 0.0089 | 0.0099 | 0.0112 | 0.6173 | 11.476 |
GRU | 0.0053 | 0.0059 | 0.0067 | 0.6921 | 4.718 | |
GRU-attention | 0.0047 | 0.0052 | 0.0060 | 0.7493 | 6.296 | |
AVOA-GRU-attention | 0.0045 | 0.0050 | 0.0056 | 0.7682 | 491.831 | |
SMA-GRU-attention | 0.0037 | 0.0042 | 0.0048 | 0.8347 | 663.152 | |
RUN-GRU-attention | 0.0032 | 0.00354 | 0.0040 | 0.8410 | 381.865 |
Table 7
SOH evaluation errors comparison of multi-stage current samples using different models"
数据集 | 模型类型 | MAE | MAPE | RSME | 测试集R2 |
---|---|---|---|---|---|
1# | LSTM | 0.0159 | 0.0170 | 0.0191 | 0.7294 |
GRU | 0.0127 | 0.0135 | 0.0152 | 0.7742 | |
GRU-attention | 0.0103 | 0.0109 | 0.0132 | 0.8562 | |
AVOA-GRU-attention | 0.0101 | 0.0107 | 0.0130 | 0.8652 | |
SMA-GRU-attention | 0.0081 | 0.0087 | 0.0102 | 0.9104 | |
RUN-GRU-attention | 0.0067 | 0.0072 | 0.0086 | 0.9473 | |
2# | LSTM | 0.0059 | 0.0066 | 0.0074 | 0.7126 |
GRU | 0.0047 | 0.0052 | 0.0057 | 0.7851 | |
GRU-attention | 0.0040 | 0.0043 | 0.0048 | 0.8136 | |
AVOA-GRU-attention | 0.0033 | 0.0037 | 0.0043 | 0.8684 | |
SMA-GRU-attention | 0.0030 | 0.0033 | 0.0038 | 0.8765 | |
RUN-GRU-attention | 0.0024 | 0.0027 | 0.0030 | 0.9128 |
1 | 熊庆, 邸振国, 汲胜昌. 锂离子电池健康状态估计及寿命预测研究进展综述[J]. 高电压技术, 2024, 50(3): 1182-1195. DOI: 10.13336/j.1003-6520.hve.20221843. |
XIONG Q, DI Z G, JI S C. Review on health state estimation and life prediction of lithium-ion batteries[J]. High Voltage Engineering, 2024, 50(3): 1182-1195. DOI: 10.13336/j.1003-6520.hve.20221843. | |
2 | 卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669. DOI: 10.19799/j.cnki. 2095-4239.2019.0263. |
LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669. DOI: 10.19799/j.cnki.2095-4239.2019.0263. | |
3 | LIU W, XU Y. A comprehensive review of health indicators of Li-ion battery for online state of health estimation[C]// 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2019: 1203-1208. DOI: 10.1109/EI247390.2019.9062037. |
4 | 戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649. DOI: 10.19799/j.cnki.2095-4239.2021.0623. |
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. DOI: 10.19799/j.cnki.2095-4239.2021.0623. | |
5 | 刘轶鑫, 张頔, 李雪, 等. Research on SOH estimation method based on SOC-OCV curve characteristics[C]// 中国汽车工程学会(China Society of Automotive Engineers). 2019中国汽车工程学会年会论文集(2), 2019: 1. |
LIU Y X, ZHANG D, LI X, et al. Research on SOH estimation method based on SOC-OCV curve characteristics[C]// China Society of Automotive Engineers. Proceedings of the 2019 Annual Meeting of the Society of Automotive Engineers of China(2), 2019: 1. | |
6 | 梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. DOI: 10.19799/j.cnki.2095-4239.2020.0166. |
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. DOI: 10.19799/j.cnki.2095-4239.2020.0166. | |
7 | 俞志骏, 安斯光, 汪伟. 锂电池SOC和SOH的自适应联合在线估算方法[J]. 计算机应用与软件, 2023, 40(10): 142-149. DOI: 10.3969/j.issn.1000-386x.2023.10.022. |
YU Z J, AN S G, WANG W. An adaptive joint online estimation method of lithium battery SOC and SOH[J]. Computer Applications and Software, 2023, 40(10): 142-149. DOI: 10.3969/j.issn.1000-386x.2023.10.022. | |
8 | SUN F C, XIONG R. A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles[J]. Journal of Power Sources, 2015, 274: 582-594. DOI: 10.1016/j.jpowsour.2014.10.119. |
9 | HE H W, XIONG R, FAN J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4): 582-598. DOI: 10.3390/en4040582. |
10 | 颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948. DOI: 10.19595/j.cnki.1000-6753.tces.171452. |
YAN X W, DENG H R, GUO Q, et al. Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948. DOI: 10.19595/j.cnki.1000-6753.tces.171452. | |
11 | 徐东辉. 锂电池一阶RC等效电路模型的动力学特性分析[J]. 电源技术, 2021, 45(11): 1448-1452. DOI: 10.3969/j.issn.1002-087X. 2021.11.018. |
XU D H. Dynamic analysis of first-order RC equivalent circuit model for automotive lithium ion power batteries[J]. Chinese Journal of Power Sources, 2021, 45(11): 1448-1452. DOI: 10. 3969/j.issn.1002-087X.2021.11.018. | |
12 | 高仁璟, 吕治强, 赵帅, 等. 基于电化学模型的锂离子电池健康状态估算[J]. 北京理工大学学报, 2022, 42(8): 791-797. DOI: 10.15918/j.tbit1001-0645.2021.310. |
GAO R J, LYU Z Q, ZHAO S, et al. Health state estimation of Li-ion batteries based on electrochemical model[J]. Transactions of Beijing Institute of Technology, 2022, 42(8): 791-797. DOI: 10.15918/j.tbit1001-0645.2021.310. | |
13 | GAO R J, LYU Z Q, ZHAO S, et al. Estimation of state of health of lithium-ion battery based on electrochemical model [J]. Transactions of Beijing institute of Technology, 2022, 42 (08): 791-797. DOI: 10.15918/j.tbit1001-0645.2021.310. |
14 | PRADA E, BERNARD J, SAUVANT-MOYNOT V. Ni-MH battery ageing: From comprehensive study to electrochemical modelling for state-of charge and state-of-health estimation[J]. IFAC Proceedings Volumes, 2009, 42(26): 123-131. DOI: 10.3182/20091130-3-FR-4008.00017. |
15 | 陆楠, 孙越, 彭鹏, 等. 数据驱动的钠离子电池健康状态评估方法研究[J]. 电源学报, 2024, 22(1): 1-10. DOI: 10.13234/j.issn.2095-2805.2024.1.1. |
LU N, SUN Y, PENG P, et al. Data-driven state of health estimation for sodium-ion batteries[J]. Journal of Power Supply, 2024, 22(1): 1-10. DOI: 10.13234/j.issn.2095-2805.2024.1.1. | |
16 | GUO P Y, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450. DOI: 10.1016/j.jpowsour.2018.11.072. |
17 | 陈吉清, 李子涵, 兰凤崇, 等. 基于非线性降维IC特征的实车电池SOH估计[J]. 汽车工程, 2023, 45(2): 199-208. DOI: 10.19562/j.chinasae.qcgc.2023.02.005. |
CHEN J Q, LI Z H, LAN F C, et al. Real-vehicle battery health state estimation based on nonlinear reduced-dimensional IC features[J]. Automotive Engineering, 2023, 45(2): 199-208. DOI: 10.19562/j.chinasae.qcgc.2023.02.005. | |
18 | SCHIFFER Z J, CANNARELLA J, ARNOLD C B. Strain derivatives for practical charge rate characterization of lithium ion electrodes[J]. Journal of the Electrochemical Society, 2015, 163(3): A427-A433. DOI: 10.1149/2.0091603jes. |
19 | WENG C H, CUI Y J, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235: 36-44. DOI: 10.1016/j.jpowsour.2013.02.012. |
20 | RICHARDSON R R, OSBORNE M A, HOWEY D A. Battery health prediction under generalized conditions using a Gaussian process transition model[J]. Journal of Energy Storage, 2019, 23: 320-328. DOI: 10.1016/j.est.2019.03.022. |
21 | 陈媛, 段文献, 何怡刚, 等. 带降噪自编码器的锂离子电池健康状态估计算法 [J/OL]. 电工技术学报, 1-17[2024-07-20]. https://doi.org/10.19595/j.cnki.1000-6753.tces.231644. |
CHEN Y, DUAN W X, HE Y G, et al. Lithium ion battery health state estimation algorithm with denoising autoencoder [J/OL]. Journal of Electrical Technology, 1-17 [2022-07-20]. https://doi.org/10.19595/j.cnki.1000-6753.tces.231644. | |
22 | 赵旭. 基于数据挖掘的电动汽车电池健康状态估计研究[D]. 成都: 西南交通大学, 2022. DOI: 10.27414/d.cnki.gxnju.2022.001673. |
ZHAO X. Research on battery health state estimation of electric vehicle based on data mining[D]. Chengdu: Southwest Jiaotong University, 2022. DOI: 10.27414/d.cnki.gxnju.2022.001673. | |
23 | MA Y, SHAN C, GAO J W, et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J]. Energy, 2022, 251: 123973. DOI: 10.1016/j.energy.2022.123973. |
24 | LIU Q, ZHENG M, LI P K. A review of data-driven SOH and RUL estimation for lithium-ion batteries[C]// 2023 42nd Chinese Control Conference (CCC). IEEE, 2023: 8769-8774. |
25 | RAMANI P, VAGHELA R, POPAT Y, et al. Lithium-ion battery health prediction using a GRU model with protective characteristic[C]//2023 International Conference on Modeling, Simulation & Intelligent Computing (MoSICom). IEEE, 2023: 521-525. DOI: 10.1109/MoSICom59118.2023.10458820. |
26 | LI Z C, CHEN D W, LU J J, et al. Li-ion battery SOH estimation based on BO-SVR model[C]// 2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2023: 3737-3742. DOI: 10.1109/EI259745.2023.10513320. |
27 | OJI T, ZHOU Y L, CI S, et al. Data-driven methods for battery SOH estimation: Survey and a critical analysis[J]. IEEE Access, 2021, 9: 126903-126916. DOI: 10.1109/ACCESS.2021.3111927. |
28 | 朱振宇, 高德欣. 基于混合网络的锂离子电池健康状态与剩余使用寿命联合估计方法[J]. 信息与控制, 2024, 53(1): 120-128. DOI: 10.13976/j.cnki.xk.2023.2378. |
ZHU Z Y, GAO D X. Joint estimation method of state of health and remaining useful life for lithium-ion batteries based on hybrid networks[J]. Information and Control, 2024, 53(1): 120-128. DOI: 10.13976/j.cnki.xk.2023.2378. | |
29 | SUN C B, QIN W H, YUN Z H. A state-of-health estimation method for lithium batteries based on fennec fox optimization algorithm-mixed extreme learning machine[J]. Batteries, 2024, 10(3): 87. DOI: 10.3390/batteries10030087. |
30 | JAVAID M U, SEO J, SUH Y K, et al. Battery state of health estimation from discharge voltage segments using an artificial neural network[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2024, 11(3): 863-876. DOI: 10.1007/s40684-024-00602-2. |
[1] | Zhenwei ZHU, Jiawei MIAO, Xiayu ZHU, Xiaoxu WANG, Jingyi QIU, Hao ZHANG. Research progress in lithium-ion battery remaining useful life prediction based on machine learning [J]. Energy Storage Science and Technology, 2024, 13(9): 3134-3149. |
[2] | Yingying XIE, Bin DENG, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Intelligent R&D of battery design automation in the era of artificial intelligence [J]. Energy Storage Science and Technology, 2024, 13(9): 3182-3197. |
[3] | Ziyu LIU, Zekun JIANG, Wei QIU, Quan XU, Yingchun NIU, Chunming XU, Tianhang ZHOU. Application of artificial intelligence in long-duration redox flow batteries storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 2871-2883. |
[4] | Congxin LI, Meiling YUE, Xintong LI, Qinghui XIONG, Xiaoyan LIU. Proton exchange membrane fuel cell aging performance prediction based on conditional neural networks [J]. Energy Storage Science and Technology, 2024, 13(9): 3094-3102. |
[5] | Guobing ZHOU, Shenzhen XU. Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes [J]. Energy Storage Science and Technology, 2024, 13(9): 3150-3160. |
[6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[7] | Yajie LI, Yiping WANG, Bin CHEN, Hailong LIN, Geng ZHANG, Siqi SHI. Machine learning-assisted phase-field simulation for predicting the impact of lithium-ion transport parameters on maximum battery dendrite height and space utilization rate [J]. Energy Storage Science and Technology, 2024, 13(9): 2864-2870. |
[8] | Jinbao FAN, Na LI, Yikun WU, Chunwang HE, Le YANG, Weili SONG, Haosen CHEN. Digital twin technology for energy batteries at the cell level [J]. Energy Storage Science and Technology, 2024, 13(9): 3112-3133. |
[9] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[10] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
[11] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[12] | Chen GENG, Jinhao MENG, Qiao PENG, Tianqi LIU, Xueyang ZENG, Gang CHEN. Estimation of the state of health of lithium-ion batteries based on feature extraction of the relaxation process [J]. Energy Storage Science and Technology, 2023, 12(11): 3479-3487. |
[13] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
[14] | Chong LI, Chenhui WANG, Gao WANG, Zonghu LU, Chengzhi MA. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation [J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344. |
[15] | Kuining LI, Cheng HE, Yi XIE, Bin LIU, Shasha DENG. Thermal management of a 48 V pouch lithium-ion battery pack based on high rate discharge condition [J]. Energy Storage Science and Technology, 2021, 10(2): 679-688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||