Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 3094-3102.doi: 10.19799/j.cnki.2095-4239.2024.0287
Congxin LI1(), Meiling YUE2(), Xintong LI2, Qinghui XIONG1, Xiaoyan LIU1
Received:
2024-04-01
Revised:
2024-07-17
Online:
2024-09-28
Published:
2024-09-20
Contact:
Meiling YUE
E-mail:setforth@163.com;yueml@bjtu.edu.cn
CLC Number:
Congxin LI, Meiling YUE, Xintong LI, Qinghui XIONG, Xiaoyan LIU. Proton exchange membrane fuel cell aging performance prediction based on conditional neural networks[J]. Energy Storage Science and Technology, 2024, 13(9): 3094-3102.
1 | 黄沙, 李亚新. 基于计算机软件的燃料电池混合储能系统分析[J]. 储能科学与技术, 2024, 13(4): 1350-1352. DOI: 10.19799/j.cnki. 2095-4239.2024.0281. |
HUANG S, LI Y X. Analysis of fuel cell hybrid energy storage system based on computer software[J]. Energy Storage Science and Technology, 2024, 13(4): 1350-1352. DOI: 10.19799/j.cnki. 2095-4239.2024.0281. | |
2 | 李奇, 刘嘉蔚, 陈维荣. 质子交换膜燃料电池剩余使用寿命预测方法综述及展望[J]. 中国电机工程学报, 2019, 39(8): 2365-2375. DOI: 10.13334/j.0258-8013.pcsee.181308. |
LI Q, LIU J W, CHEN W R. Review and prospect of remaining useful life prediction methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2019, 39(8): 2365-2375. DOI: 10.13334/j.0258-8013.pcsee.181308. | |
3 | BRESSEL M, HILAIRET M, HISSEL D, et al. Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2569-2577. DOI: 10.1109/TIE.2016.2519328. |
4 | JOUIN M, GOURIVEAU R, HISSEL D, et al. Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation[J]. IEEE Transactions on Reliability, 2016, 65(1): 336-349. DOI: 10.1109/TR.2015. 2454499. |
5 | 张雪霞, 高雨璇, 陈维荣. 基于数据驱动的质子交换膜燃料电池寿命预测[J]. 西南交通大学学报, 2020, 55(2): 417-427. DOI: 10.3969/j.issn.0258-2724.20180016. |
ZHANG X X, GAO Y X, CHEN W R. Data-driven based remaining useful life prediction for proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. DOI: 10.3969/j.issn.0258-2724.20180016. | |
6 | HE W B, LIU T, MING W Y, et al. Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning[J]. Renewable and Sustainable Energy Reviews, 2024, 192: 114193. DOI: 10.1016/j.rser.2023.114193. |
7 | ZHOU D M, AL-DURRA A, ZHANG K, et al. Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology[J]. Journal of Power Sources, 2018, 399: 314-328. DOI: 10.1016/j.jpowsour.2018.06.098. |
8 | MORANDO S, JEMEI S, HISSEL D, et al. Proton exchange membrane fuel cell ageing forecasting algorithm based on Echo State Network[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1472-1480. DOI: 10.1016/j.ijhydene.2016.05.286. |
9 | MA R, YANG T, BREAZ E, et al. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[J]. Applied Energy, 2018, 231: 102-115. DOI: 10.1016/j.apenergy.2018.09.111. |
10 | 曾其权, 罗马吉, 杨印龙, 等. 基于LSTM-UPF混合驱动方法的燃料电池寿命预测[J]. 储能科学与技术, 2024, 13(3): 963-970. DOI: 10.19799/j.cnki.2095-4239.2023.0705. |
ZENG Q Q, LUO M J, YANG Y L, et al. Life prediction of fuel cells based on the LSTM-UPF hybrid method[J]. Energy Storage Science and Technology, 2024, 13(3): 963-970. DOI: 10.19799/j.cnki.2095-4239.2023.0705. | |
11 | ZHANG Z D, WANG Y X, HE H W, et al. A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell[J]. Applied Energy, 2021, 304: 117841. DOI: 10.1016/j.apenergy.2021.117841. |
12 | WANG C, LI Z L, OUTBIB R, et al. A novel long short-term memory networks-based data-driven prognostic strategy for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2022, 47(18): 10395-10408. DOI: 10.1016/j.ijhydene.2022.01.121. |
13 | MA T C, ZHANG Z L, LIN W K, et al. Impedance prediction model based on convolutional neural networks methodology for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18534-18545. DOI: 10.1016/j.ijhydene.2021.02.204. |
14 | HUO W W, LI W E, ZHANG Z H, et al. Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection[J]. Energy Conversion and Management, 2021, 243: 114367. DOI: 10.1016/j.enconman.2021.114367. |
15 | LIU F F, GAO Z L, SU J Z, et al. Understanding the process of carbon corrosion and its impact on performance degradation during simulated start-stop operations for the proton exchange membrane fuel cell[J]. Electrochimica Acta, 2023, 468: 143193. DOI: 10.1016/j.electacta.2023.143193. |
16 | PAN M Z, PAN C J, LI C, et al. A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110771. DOI: 10.1016/j.rser.2021. 110771. |
17 | 姚颖方, 刘建国, 邹志刚. 燃料电池膜电极衰减机制及其抗老化策略[J]. 电化学, 2018, 24(6): 664-676. DOI: 10.13208/j.electrochem. 180853. |
YAO Y F, LIU J G, ZOU Z G. Degradation mechanism and anti-aging strategies of membrane electrode assembly of fuel cells[J]. Journal of Electrochemistry, 2018, 24(6): 664-676. DOI: 10. 13208/j.electrochem.180853. | |
18 | YUAN H, DAI H F, MING P W, et al. Understanding dynamic behavior of proton exchange membrane fuel cell in the view of internal dynamics based on impedance[J]. Chemical Engineering Journal, 2022, 431: 134035. DOI: 10.1016/j.cej.2021.134035. |
19 | BENAGGOUNE K, YUE M L, JEMEI S, et al. A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell[J]. Applied Energy, 2022, 313: 118835. DOI: 10.1016/j.apenergy.2022.118835. |
20 | YUE M L, ZHANG X, TENG T, et al. Trend-focused dynamic degradation prediction based on echo state networks in automotive fuel cells[J]. Energy Science & Engineering, 2024, 12(4): 1462-1471. DOI: 10.1002/ese3.1669. |
[1] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[2] | Yajie LI, Yiping WANG, Bin CHEN, Hailong LIN, Geng ZHANG, Siqi SHI. Machine learning-assisted phase-field simulation for predicting the impact of lithium-ion transport parameters on maximum battery dendrite height and space utilization rate [J]. Energy Storage Science and Technology, 2024, 13(9): 2864-2870. |
[3] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[4] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[5] | Dinghong LIU, Wenkai DONG, Zhaoyang LI, Hongzhu ZHANG, Xin QI. Estimation of real-vehicle battery state of health using the RUN-GRU-attention model [J]. Energy Storage Science and Technology, 2024, 13(9): 3042-3058. |
[6] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[7] | Ziyu LIU, Zekun JIANG, Wei QIU, Quan XU, Yingchun NIU, Chunming XU, Tianhang ZHOU. Application of artificial intelligence in long-duration redox flow batteries storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 2871-2883. |
[8] | Bin DENG, Haiming HUA, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Deep potential model: Applications and insights for electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2024, 13(9): 2884-2906. |
[9] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[10] | Chang LI, Weibo ZHENG, Shuai ZHU, Yunwen JIANG, Pingwen MING. Research on the dynamic process of a fuel cell air system based on a model [J]. Energy Storage Science and Technology, 2024, 13(8): 2580-2588. |
[11] | Ying BAI. Research on the energy supply role of fuel cells in logistics transportation systems [J]. Energy Storage Science and Technology, 2024, 13(7): 2459-2461. |
[12] | Miao LI, Kerong GAI, Fengying ZHOU, Huan HUANG, Yongqiang YANG. Analysis of energy supply and storage characteristics of fuel cells in automotive engineering [J]. Energy Storage Science and Technology, 2024, 13(7): 2483-2485. |
[13] | Zhonghao ZHANG, Diankai QIU, Linfa PENG, Peiyun YI. Study on high dispersion technology of bifunctional oxygen electrodes in proton exchange membrane unitized regenerative fuel cells [J]. Energy Storage Science and Technology, 2024, 13(5): 1417-1426. |
[14] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. |
[15] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||