Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 3906-3920.doi: 10.19799/j.cnki.2095-4239.2024.0428
• Energy Storage System and Engineering • Previous Articles Next Articles
Huaning WANG(), Xinjie XUE, Mianheng ZHANG, Jiahao WANG, Bin YANG, Changying ZHAO()
Received:
2024-05-14
Revised:
2024-05-30
Online:
2024-11-28
Published:
2024-11-27
Contact:
Changying ZHAO
E-mail:huaning.wang@sjtu.edu.cn;changying.zhao@sjtu.edu.cn
CLC Number:
Huaning WANG, Xinjie XUE, Mianheng ZHANG, Jiahao WANG, Bin YANG, Changying ZHAO. Experimental and numerical investigation of a packed bed latent heat storage system for Carnot batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3906-3920.
1 | OLABI A G, ALI ABDELKAREEM M. Renewable energy and climate change[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112111. DOI: 10.1016/j.rser.2022.112111. |
2 | ZHAO C Y, JU S H, XUE Y, et al. China's energy transitions for carbon neutrality: Challenges and opportunities[J]. Carbon Neutrality, 2022, 1(1): 7. DOI: 10.1007/s43979-022-00010-y. |
3 | ZHANG H Y, GAO S Z, ZHOU P. Role of digitalization in energy storage technological innovation: Evidence from China[J]. Renewable and Sustainable Energy Reviews, 2023, 171: 113014. DOI: 10.1016/j.rser.2022.113014. |
4 | LIANG T, VECCHI A, KNOBLOCH K, et al. Key components for Carnot battery: Technology review, technical barriers and selection criteria[J]. Renewable and Sustainable Energy Reviews, 2022, 163: 112478. DOI: 10.1016/j.rser.2022.112478. |
5 | ZHANG M Y, SHI L F, HU P, et al. Carnot battery system integrated with low-grade waste heat recovery: Toward high energy storage efficiency[J]. Journal of Energy Storage, 2023, 57: 106234. DOI: 10.1016/j.est.2022.106234. |
6 | VECCHI A, KNOBLOCH K, LIANG T, et al. Carnot Battery development: A review on system performance, applications and commercial state-of-the-art[J]. Journal of Energy Storage, 2022, 55: 105782. DOI: 10.1016/j.est.2022.105782. |
7 | XUE X J, ZHAO Y, ZHAO C Y. Multi-criteria thermodynamic analysis of pumped-thermal electricity storage with thermal integration and application in electric peak shaving of coal-fired power plant[J]. Energy Conversion and Management, 2022, 258: 115502. DOI: 10.1016/j.enconman.2022.115502. |
8 | ZHANG H, WANG L, LIN X P, et al. Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle[J]. Applied Energy, 2020, 278: 115607. DOI: 10.1016/j.apenergy.2020.115607. |
9 | ZHAO C Y, YAN J, TIAN X K, et al. Progress in thermal energy storage technologies for achieving carbon neutrality[J]. Carbon Neutrality, 2023, 2(1): 10. DOI: 10.1007/s43979-023-00050-y. |
10 | AMEEN M T, MA Z W, SMALLBONE A, et al. Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency[J]. Applied Energy, 2023, 333: 120580. DOI: 10.1016/j.apenergy.2022.120580. |
11 | DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756. DOI: 10.1016/j.est.2020.101756. |
12 | ZHAO Y, ZHAO C Y, MARKIDES C N, et al. Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review[J]. Applied Energy, 2020, 280: 115950. DOI: 10.1016/j.apenergy.2020.115950. |
13 | XUE X J, ZHAO C Y. Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores[J]. Applied Energy, 2023, 329: 120274. DOI: 10.1016/j.apenergy.2022.120274. |
14 | ALBERT M, MA Z W, BAO H S, et al. Operation and performance of Brayton pumped thermal energy storage with additional latent storage[J]. Applied Energy, 2022, 312: 118700. DOI: 10.1016/j.apenergy.2022.118700. |
15 | WU M, XU C, HE Y L. Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules[J]. Applied Thermal Engineering, 2016, 93: 1061-1073. DOI: 10.1016/j.applthermaleng.2015.10.014. |
16 | TAFONE A, PILI R, PIHL ANDERSEN M, et al. Dynamic modelling of a compressed heat energy storage (CHEST) system integrated with a cascaded phase change materials thermal energy storage[J]. Applied Thermal Engineering, 2023, 226: 120256. DOI: 10.1016/j.applthermaleng.2023.120256. |
17 | ZHAO Y, SONG J, ZHAO C Y, et al. Thermodynamic investigation of latent-heat stores for pumped-thermal energy storage[J]. Journal of Energy Storage, 2022, 55: 105802. DOI: 10.1016/j.est.2022.105802. |
18 | LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: 113806. DOI: 10.1016/j.apenergy.2019.113806. |
19 | NAVARRETE N, MONDRAGÓN R, WEN D S, et al. Thermal energy storage of molten salt–based nanofluid containing nano-encapsulated metal alloy phase change materials[J]. Energy, 2019, 167: 912-920. DOI: 10.1016/j.energy.2018.11.037. |
20 | REDDY B D, RAHUL S V S, HARISH R. Impact of fin number and nanoparticle size on molten salt NanoPCM melting in finned annular space[J]. Journal of Energy Storage, 2023, 72: 108705. DOI: 10.1016/j.est.2023.108705. |
21 | XIONG Y X, WANG Z Y, WU Y T, et al. Performance enhancement of bromide salt by nano-particle dispersion for high-temperature heat pipes in concentrated solar power plants[J]. Applied Energy, 2019, 237: 171-179. DOI: 10.1016/j.apenergy.2019.01.026. |
22 | WANG H R, RAN X F, ZHONG Y J, et al. Ternary chloride salt–porous ceramic composite as a high-temperature phase change material[J]. Energy, 2022, 238: 121838. DOI: 10.1016/j.energy.2021.121838. |
23 | SHENG N, GE Y F, GUO Y Q, et al. Macro-encapsulated metallic phase change material over 1000 ℃ for high-temperature thermal storage[J]. Solar Energy Materials and Solar Cells, 2022, 239: 111655. DOI: 10.1016/j.solmat.2022.111655. |
24 | ALAM T E, DHAU J S, GOSWAMI D Y, et al. Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems[J]. Applied Energy, 2015, 154: 92-101. DOI: 10.1016/j.apenergy.2015.04.086. |
25 | LI M J, LI M J, TONG Z X, et al. Optimization of the packed-bed thermal energy storage with cascaded PCM capsules under the constraint of outlet threshold temperature[J]. Applied Thermal Engineering, 2021, 186: 116473. DOI: 10.1016/j.applthermaleng. 2020.116473. |
26 | MAO Q J, ZHANG Y M. Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system[J]. Renewable Energy, 2020, 152: 110-119. DOI: 10.1016/j.renene.2020.01.051. |
27 | KHOR J O, SZE J Y, LI Y, et al. Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109421. DOI: 10.1016/j.rser.2019.109421. |
28 | BASHIRI MOUSAVI S, ADIB M, SOLTANI M, et al. Transient thermodynamic modeling and economic analysis of an adiabatic compressed air energy storage (A-CAES) based on cascade packed bed thermal energy storage with encapsulated phase change materials[J]. Energy Conversion and Management, 2021, 243: 114379. DOI: 10.1016/j.enconman.2021.114379. |
29 | HE Z Y, WANG X H, DU X Z, et al. Experiments on comparative performance of water thermocline storage tank with and without encapsulated paraffin wax packed bed[J]. Applied Thermal Engineering, 2019, 147: 188-197. DOI: 10.1016/j.applthermaleng.2018.10.051. |
30 | TAFONE A, BORRI E, CABEZA L F, et al. Innovative cryogenic phase change material (PCM) based cold thermal energy storage for liquid air energy storage (LAES)-Numerical dynamic modelling and experimental study of a packed bed unit[J]. Applied Energy, 2021, 301: 117417. DOI: 10.1016/j.apenergy. 2021.117417. |
31 | LI M J, JIN B, MA Z, et al. Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material[J]. Applied Energy, 2018, 221: 1-15. DOI: 10.1016/j.apenergy.2018.03.156. |
32 | HE X B, QIU J, WANG W, et al. Optimization design and performance investigation on the cascaded packed-bed thermal energy storage system with spherical capsules[J]. Applied Thermal Engineering, 2023, 225: 120241. DOI: 10.1016/j.applthermaleng.2023.120241. |
33 | XUE X J, WANG H N, WANG J H, et al. Experimental and numerical investigation on latent heat/cold stores for advanced pumped-thermal energy storage[J]. Energy, 2024, 300: 131490. DOI: 10.1016/j.energy.2024.131490. |
34 | BONK A, SAU S, URANGA N, et al. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants[J]. Progress in Energy and Combustion Science, 2018, 67: 69-87. DOI: 10.1016/j.pecs.2018.02.002. |
35 | FERNÁNDEZ A G, GOMEZ-VIDAL J, ORÓ E, et al. Mainstreaming commercial CSP systems: A technology review[J]. Renewable Energy, 2019, 140: 152-176. DOI: 10.1016/j.renene. 2019.03.049. |
36 | SHAMSI H, BOROUSHAKI M, GERAEI H. Performance evaluation and optimization of encapsulated cascade PCM thermal storage[J]. Journal of Energy Storage, 2017, 11: 64-75. DOI: 10.1016/j.est.2017.02.003. |
37 | WANG W, SHUAI Y, HE X B, et al. Influence of tank-to-particle diameter ratio on thermal storage performance of random packed-bed with spherical macro-encapsulated phase change materials[J]. Energy, 2023, 282: 128779. DOI: 10.1016/j.energy.2023.128779. |
38 | WU M, XU C, HE Y L. Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules[J]. Applied Energy, 2014, 121: 184-195. DOI: 10.1016/j.apenergy.2014.01.085. |
39 | GONZO E E. Estimating correlations for the effective thermal conductivity of granular materials[J]. Chemical Engineering Journal, 2002, 90(3): 299-302. DOI: 10.1016/S1385-8947(02)00121-3. |
40 | KENISARIN M, MAHKAMOV K. Solar energy storage using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9): 1913-1965. DOI: 10.1016/j.rser.2006.05.005. |
41 | BRÜCKNER S, LIU S, MIRÓ L, et al. Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies[J]. Applied Energy, 2015, 151: 157-167. DOI: 10.1016/j.apenergy.2015.01.147. |
[1] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[2] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[3] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. |
[4] | Kan ZHANG, Ting FU, Jiangbo WANG. Study on thermal equalization of spider web thermal structure based on topology optimization method [J]. Energy Storage Science and Technology, 2024, 13(5): 1721-1730. |
[5] | Dongxu HU, Shaofei ZHU, Xiaogang WEI, Yadong CUI, Baohong ZHU, Xingjian DAI, Wen LI, Haisheng CHEN. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting [J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. |
[6] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[7] | Ludi ZHANG, Guobing ZHOU. Simulated optimization of eccentricity and fin structure of a horizontal double-tube latent heat storage unit [J]. Energy Storage Science and Technology, 2024, 13(3): 1019-1029. |
[8] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[9] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[10] | Long LI, Xiqing YANG, Ling TAO. Simulation analysis of heat storage behavior of phase change thermal storage system based on modified sensible heat capacity method [J]. Energy Storage Science and Technology, 2024, 13(11): 3939-3948. |
[11] | Yu ZHANG, Minxia LI, Jun LI, Libo YAN, Jiaxing ZHANG, Zhipeng WANG, Hua TIAN. Feasibility analysis of a Carnot battery energy storage system for waste heat recovery of liquid cooling units in data centers [J]. Energy Storage Science and Technology, 2024, 13(11): 3921-3929. |
[12] | Hailan WANG, Xiaoyu ZHANG, Jianhong GUO, Yong ZHAO, Zhuo CHEN, Yibo WANG. Numerical analysis of heat transfer performance in a shell-and-tube heat storage unit based using medium-low temperature phase change material [J]. Energy Storage Science and Technology, 2024, 13(10): 3376-3387. |
[13] | Zhicong CHEN, Yue MA, Huazheng YANG, Chenpeng WANG, Yinglong LIU, Hao YE, Jiawei LIU, Xiaoru XU, Yingli LIU, Jiecheng CHEN, Zhiwei DU, Bo LIANG. Numerical simulation and experimental verification of micro-tubular solid oxide fuel cell with double-convex platform current collector in portable device [J]. Energy Storage Science and Technology, 2024, 13(10): 3523-3533. |
[14] | Yuchao QIU, Baishuang CHEN, Cheng CHEN, Ruipeng QIAN. Quasi-static constitutive modeling of lithium-ion battery materials under compression [J]. Energy Storage Science and Technology, 2024, 13(10): 3518-3522. |
[15] | Yanjun BO, Xinjie XUE, Huaning WANG, Changying ZHAO. System design and experimental study of Carnot battery based on latent heat/cold stores [J]. Energy Storage Science and Technology, 2023, 12(9): 2823-2832. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||