Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 4078-4088.doi: 10.19799/j.cnki.2095-4239.2024.0434
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Wei QIAN1,2(), Dazhong ZHAO1, Xiangwei GUO1,2, Yafeng WANG1, Wenjing LI1
Received:
2024-05-16
Revised:
2024-05-28
Online:
2024-11-28
Published:
2024-11-27
Contact:
Wei QIAN
E-mail:qwei@hpu.edu.cn
CLC Number:
Wei QIAN, Dazhong ZHAO, Xiangwei GUO, Yafeng WANG, Wenjing LI. State of charge estimation of lithium batteries using adaptive unscented H infinity filter[J]. Energy Storage Science and Technology, 2024, 13(11): 4078-4088.
1 | 余传祥, 张英健, 潘傲然, 等. 基于IFO-GA-IUKF算法的锂电池多温度SOC估计[J/OL]. 储能科学与技术: 1-13[2024-05-07].https://doi.org/10.19799/j.cnki.2095-4239.2024.0001. |
YU C X, ZHANG Y J, PAN A R, et al. Research on state of charge estimation of power battery in wide temperature range[J/OL]. Energy Storage Science and Technology, 1-13[2024-05-07]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0001. | |
2 | MAHESHWARI A, NAGESWARI S. Real-time state of charge estimation for electric vehicle power batteries using optimized filter[J]. Energy, 2022, 254: 124328. DOI: 10.1016/j.energy. 2022. 124328. |
3 | CHEN L, YU W T, CHENG G Y, et al. State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter[J]. Energy, 2023, 271: 127007. DOI: 10.1016/j.energy.2023.127007. |
4 | CHEN L P, GUO W L, LOPES A M, et al. State-of-charge estimation for lithium-ion batteries based on incommensurate fractional-order observer[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 118: 107059. DOI: 10.1016/j.cnsns.2022.107059. |
5 | 袁照凯, 范秋华, 王冬青, 等. 基于MIAEKF的多温度下锂电池SOC估计[J]. 储能科学与技术, 2024, 13(2): 680-690. DOI: 10.19799/j.cnki.2095-4239.2023.0533. |
YUAN Z K, FAN Q H, WANG D Q, et al. State of charge estimation for lithium-ion batteries under multiple temperatures based on the MIAEK algorithm[J]. Energy Storage Science and Technology, 2024, 13(2): 680-690. DOI: 10.19799/j.cnki.2095-4239.2023.0533. | |
6 | YU Q Q, HUANG Y K, TANG A H, et al. OCV-SOC-temperature relationship construction and state of charge estimation for a series–parallel lithium-ion battery pack[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(6): 6362-6371. DOI: 10.1109/TITS.2023.3252164. |
7 | MOHAMMADI F. Lithium-ion battery State-of-charge estimation based on an improved coulomb-counting algorithm and uncertainty evaluation[J]. Journal of Energy Storage, 2022, 48: 104061. DOI: 10.1016/j.est.2022.104061. |
8 | CHEN J X, ZHANG Y, WU J, et al. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output[J]. Energy, 2023, 262: 125375. DOI: 10.1016/j.energy.2022.125375. |
9 | WANG Q, YE M, WEI M, et al. Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios[J]. Energy, 2023, 263: 125718. DOI: 10.1016/j.energy.2022.125718. |
10 | HOSSAIN M, HAQUE M E, ARIF M T. Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis[J]. Journal of Energy Storage, 2022, 51: 104174. DOI: 10.1016/j.est. 2022.104174. |
11 | GE C A, ZHENG Y P, YU Y. State of charge estimation of lithium-ion battery based on improved forgetting factor recursive least squares-extended Kalman filter joint algorithm[J]. Journal of Energy Storage, 2022, 55: 105474. DOI: 10.1016/j.est. 2022. 105474. |
12 | HE L, WANG Y Y, WEI Y J, et al. An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery[J]. Energy, 2022, 244: 122627. DOI: 10.1016/j.energy.2021.122627. |
13 | WANG L M, GAO K X, HAN J Y, et al. Battery pack SOC estimation by Noise Matrix Self Adjustment-Extended Kalman Filter algorithm based on cloud data[J]. Journal of Energy Storage, 2024, 84: 110706. DOI: 10.1016/j.est.2024.110706. |
14 | QIAN W, LI W, GUO X W, et al. A switching gain adaptive sliding mode observer for SOC estimation of lithium-ion battery[J]. Energy, 2024, 292: 130585. DOI: 10.1016/j.energy.2024.130585. |
15 | CHEN Z G, ZHOU J X, ZHOU F, et al. State-of-charge estimation of lithium-ion batteries based on improved H infinity filter algorithm and its novel equalization method[J]. Journal of Cleaner Production, 2021, 290: 125180. DOI: 10.1016/j.jclepro. 2020.125180. |
16 | LIU F, YU D, SU W X, et al. Adaptive multitimescale joint estimation method for SOC and capacity of series battery pack[J]. IEEE Transactions on Transportation Electrification, 2024, 10(2): 4484-4502. DOI: 10.1109/TTE.2023.3314050. |
17 | HOSSAIN M, HAQUE M E, ARIF M T. Online model parameter and state of charge estimation of Li-ion battery using unscented Kalman filter considering effects of temperatures and C-rates[J]. IEEE Transactions on Energy Conversion, 2022, 37(4): 2498-2511. DOI: 10.1109/TEC.2022.3178600. |
18 | XIAO R X, HU Y W, JIA X G, et al. A novel estimation of state of charge for the lithium-ion battery in electric vehicle without open circuit voltage experiment[J]. Energy, 2022, 243: 123072. DOI: 10.1016/j.energy.2021.123072. |
19 | REZAEI O, MOGHADDAM H A, PAPARI B. A fast sliding-mode-based estimation of state-of-charge for Lithium-ion batteries for electric vehicle applications[J]. Journal of Energy Storage, 2022, 45: 103484. DOI: 10.1016/j.est.2021.103484. |
20 | XIONG R, YU Q Q, WANG L Y, et al. A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter[J]. Applied Energy, 2017, 207: 346-353. DOI: 10.1016/j.apenergy. 2017. 05.136. |
21 | CHEN C, XIONG R, SHEN W X. A lithium-ion battery-in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 332-342. DOI: 10.1109/TPEL. 2017.2670081. |
22 | SHU X, CHEN Z, SHEN J W, et al. State of charge estimation for lithium-ion battery based on hybrid compensation modeling and adaptive H-infinity filter[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 945-957. DOI: 10.1109/TTE. 2022. 3180077. |
23 | ZHAO L H, LIU Z Y, JI G H. Lithium-ion battery state of charge estimation with model parameters adaptation using H ∞ extended Kalman filter[J]. Control Engineering Practice, 2018, 81: 114-128. DOI: 10.1016/j.conengprac.2018.09.010. |
24 | CHEN Z, ZHAO H Q, SHU X, et al. Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter[J]. Energy, 2021, 228: 120630. DOI: 10.1016/j.energy.2021.120630. |
25 | LIU F, YU D, SU W X, et al. Multi-state joint estimation of series battery pack based on multi-model fusion[J]. Electrochimica Acta, 2023, 443: 141964. DOI: 10.1016/j.electacta.2023.141964. |
26 | DONG G Z, XU Y, WEI Z B. A hierarchical approach for finite-time H∞ state-of-charge observer and probabilistic lifetime prediction of lithium-ion batteries[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 718-728. DOI: 10.1109/TEC. 2021. 3109896. |
27 | LI K Q, ZHOU F, CHEN X, et al. State-of-charge estimation combination algorithm for lithium-ion batteries with Frobenius-norm-based QR decomposition modified adaptive cubature Kalman filter and H-infinity filter based on electro-thermal model[J]. Energy, 2023, 263: 125763. DOI: 10.1016/j.energy. 2022. 125763. |
28 | ZHANG S S, WAN Y H, DING J, et al. State of charge (SOC) estimation based on extended exponential weighted moving average H∞ filtering[J]. Energies, 2021, 14(6): 1655. DOI: 10.3390/en14061655. |
29 | ZHAO J B, MILI L. A theoretical framework of robust H-infinity unscented Kalman filter and its application to power system dynamic state estimation[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2734-2746. DOI: 10.1109/TSP. 2019. 2908910. |
30 | NING Z S, DENG Z W, LI J W, et al. Co-estimation of state of charge and state of health for 48 V battery system based on cubature Kalman filter and H-infinity[J]. Journal of Energy Storage, 2022, 56: 106052. DOI: 10.1016/j.est.2022.106052. |
31 | 郭向伟, 邢程, 司阳, 等. RLS锂电池全工况自适应等效电路模型[J]. 电工技术学报, 2022, 37(16): 4029-4037. DOI: 10.19595/j.cnki.1000-6753.tces.210384. |
GUO X W, XING C, SI Y, et al. RLS adaptive equivalent circuit model of lithium battery under full working condition[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4029-4037. DOI: 10.19595/j.cnki.1000-6753.tces.210384. | |
32 | ZHANG S Z, GUO X, ZHANG X W. An improved adaptive unscented Kalman filtering for state of charge online estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101980. DOI: 10.1016/j.est.2020.101980. |
33 | CHEN L P, WU X B, LOPES A M, et al. Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter[J]. Energy, 2022, 252: 123972. DOI: 10.1016/j.energy.2022.123972. |
34 | LIU Y Y, WANG S L, XIE Y X, et al. A novel adaptive H-infinity filtering method for the accurate SOC estimation of lithium-ion batteries based on optimal forgetting factor selection[J]. International Journal of Circuit Theory and Applications, 2022, 50(10): 3372-3386. DOI: 10.1002/cta.3339. |
[1] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[2] | Junyu JIAO, Quanquan ZHANG, Ningbo CHEN, Jiyu WANG, Qiudi LU, Haohao DING, Peng PENG, Xiaohe SONG, Fan ZHANG, Jiaxin ZHENG. Development and applications of an intelligent big data analysis platform for batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 3198-3213. |
[3] | Ying LIU, Bingxiang SUN, Xinze ZHAO, Junwei ZHANG. Joint estimation of SOC/SOP for lithium-ion batteries across a wide temperature range using an electro-thermal coupling model [J]. Energy Storage Science and Technology, 2024, 13(9): 3030-3041. |
[4] | Kaiyue YANG, Xinbing XIE, Xiaozhong DU. Exploration of lithium battery electrode calendering process based on discrete element method [J]. Energy Storage Science and Technology, 2024, 13(8): 2570-2579. |
[5] | Zhanwei LI, Dongfang FAN, Chao ZENG, Wenqian HE, Jin HE. Research on capacity optimization configuration and operation strategy of energy storage system considering wind and solar consumption [J]. Energy Storage Science and Technology, 2024, 13(8): 2713-2725. |
[6] | Yinan HE, Kai ZHANG, Junwu ZHOU, Xinyang WANG, Bailin ZHENG. Influence of external loads on the cycling performance of silicon anode lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2559-2569. |
[7] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[8] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[9] | Yuhao WANG, Zhiyong LI, Xin GUO. Applications and challenges of polymer-based electrolytes in low-temperature solid-state lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2243-2258. |
[10] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[11] | Baoquan LIU, Xiaoyu CAO. Accurate typical gas detection of lithium battery in early thermal runaway period [J]. Energy Storage Science and Technology, 2024, 13(6): 1995-2009. |
[12] | Daxing ZHANG, Zerong HUANG, Xiangdong WANG, Yankai Wang, Bingzi CAI, Haoyu YUAN, Mingming TIAN, Yingping YUAN, Yuan CAO. Balancing control strategy for cascaded utilization of battery systems using power converters [J]. Energy Storage Science and Technology, 2024, 13(5): 1635-1642. |
[13] | Xiaobing CHANG, Zongshang HOU, Lianqi LIU, Guang WANG, Jiale XIE. Joint estimation of the state of charge and temperature of lithium batteries based on the electric thermal coupling effect [J]. Energy Storage Science and Technology, 2024, 13(4): 1142-1153. |
[14] | Qing LI, Shaowei ZHANG, Silun LUO, Juchen LI, Haichao CHENG, Chenyi LU. A novel automatic underwater vehicle SOC estimator based on BPNN-AUKF at different temperatures [J]. Energy Storage Science and Technology, 2024, 13(4): 1205-1215. |
[15] | Wei XIAO, Xiaowen WU, Jingling SUN, Wei CHEN. Numerical calculation of temperature field of energy storage battery module and optimization design of heat dissipation system [J]. Energy Storage Science and Technology, 2024, 13(4): 1159-1166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||