Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1445-1460.doi: 10.19799/j.cnki.2095-4239.2024.0997
• Energy Storage Materials and Devices • Previous Articles Next Articles
					
													Guipei XU1( ), Hao LIU2,3, Jiewen LAI1, Yifeng LU1, Hui HUANG1, Huifang DI2, Zhenbing WANG2(
), Hao LIU2,3, Jiewen LAI1, Yifeng LU1, Hui HUANG1, Huifang DI2, Zhenbing WANG2( )
)
												  
						
						
						
					
				
Received:2024-10-28
															
							
																	Revised:2024-11-30
															
							
															
							
																	Online:2025-04-28
															
							
																	Published:2025-05-20
															
						Contact:
								Zhenbing WANG   
																	E-mail:413536165@qq.com;wangzhenbing@sxicc.ac.cn
																					CLC Number:
Guipei XU, Hao LIU, Jiewen LAI, Yifeng LU, Hui HUANG, Huifang DI, Zhenbing WANG. Research progress on solvent-free electrode technology for supercapacitor and lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(4): 1445-1460.
 
													
													Table 1
Properties of binders commonly used in dry electrode technology"
| 黏结剂 | 阳极稳定性 | 阴极稳定性 | 适用的干法电极技术 | 使用温度/℃ | 黏结剂属性 | 参考文献 | 
|---|---|---|---|---|---|---|
| 聚四氟乙烯(PTFE) | 不稳定 | 稳定 | 聚合物纤维化 | 25~80 | 机械变形 | [ | 
| 聚偏二氟乙烯(PVDF) | 部分稳定 | 稳定 | 干粉喷涂沉积 | >80 | 热塑性 | [ | 
| 聚环氧乙烷 | 部分稳定 | 电位>4 V不稳定 | 热熔挤压,3D打印 | 150~170 | 热塑性 | [ | 
| 聚丙烯 | 稳定 | 稳定 | 热熔挤压 | 160~190 | 热塑性 | [ | 
| 聚碳酸丙烯酯+氢化丁腈橡胶 | 不稳定 | 稳定 | 直接压制 | 40~90 | 热塑性 | [ | 
 
													
													Table 2
Dry electrodes versus wet electrodes"
| 对比项 | 湿法电极技术 | 干法电极技术 | 参考文献 | 
|---|---|---|---|
| 成本 | 电极干燥/溶剂NMP回收相关成本(47%)、材料成本(溶剂占比1%~2%) | 不使用溶剂NMP,无电极干燥和溶剂回收相关成本,总成本降低15% | [ | 
| 对环境的影响 | 有毒溶剂,能耗高,CO2排放量大 | 无溶剂,能耗更低,每生产10 kWh的二氧化碳排放量减少1000 kg | [ | 
| 生产效率 | 7个步骤,干燥、溶剂回收耗时>3 h) | 5个步骤,无需干燥时间,生产时间减少16.2%~21.4% | [ | 
| 能量消耗 | 约47%的总能耗用于干燥和溶剂回收,每生产 10 kWh,干燥和溶剂回收耗电420 Wh | 无干燥和溶剂回收过程,能源成本降低38%~40% | [ | 
| 兼容性 | 不适用于厚电极和固态电极的制备 | 在制备厚电极方面具有显著优势,可用于预锂化,可制备全固态电池的电极 | [ | 
| 电极性能 | 厚电极中的黏结剂表现出梯度变化,颗粒黏附性较差(<4 mAh/cm2),孔隙率更高(4%~10%) | 特定黏结剂分布,倍率性能提高,孔隙率降低,颗粒黏附性更好(>5 mAh/cm2),电极机械强度显著提高 | [ | 
 
													
													Fig. 3
(a) The number of patents for dry powder spray deposition and polymer fibrillation in lithium-ion batteries[41]; (b) The number of published articles on the Web of Science with the keyword “lithium-ion batteries with dry electrodes or solvent-free electrodes” for the period 2006—2022[41]; (c) The distribution of patents for polymer fibrillation and dry powder spray deposition[24]; (d) Number of patents filed by different countries as a percentage of total patents[24]; (e) Number of patents filed by each country for polymer fibrillation and dry powder spray deposition[24]"
 
														 
													
													Fig. 4
(a) Schematic diagram of active graphene/activated carbon dry electrode preparation process[44]; (b) Diagram of the dispersion state of the electrode material[45]; (c) SEM images of the surface of the dry electrode[46]; (d) SEM images of the cross section of the dry electrode[46]; (e) SEM image of the surface of the wet electrode[46]; (f) SEM images of the cross section of the wet electrode[46]; (g)Capacity retention of supercapacitors during float charging[47]; (h) Resistance changes of supercapacitors during float charging[47]; (i) Rate performance of supercapacitors during float charging[47]"
 
														 
													
													Fig. 5
(a) Schematic diagram of polymer fibrillation used for the preparation of LFP electrode process[53]; (b) Schematic diagram of dry PVDF graphite electrode preparation process based on PTFE fibrillization[54]; (c) Schematic diagram of electrode preparation using dry powder spray deposition process[21]; (d) Schematic of the dry powder spray deposition process used to fabricate cathodes containing NMC, carbon black and PVDF[15]; (e) Schematic of NMC surfaces with different PVDF[62]"
 
														 
													
													Fig. 6
(a) Schematic of magnetron sputtering deposition setup[66]; (b) Schematic of all-solid-state cell using LiCoO2 thin film on Au and Pt single crystal (110) substrate[67]; (c) Specific energy of hypothetical LTO/LFP cell as a function of surface area and comparison between active material loading and commercial SoA[69]; (d) Schematic of dry process[29]; (e) Schematic of dry process for lithium-ion battery electrode preparation[70]"
 
														 
													
													Fig. 7
(a) Schematic of wet electrode process and direct pressing of dry electrodes for lithium-ion batteries[72]; (b) Schematic of uniformly applying a pressure of 2 MPa to a soft-packed cell using a pressure jig[73]; (c) Cross-sectional view of an all-solid-state battery[74]; (d) Schematic of a lithium-ion battery with 3D cross-finger microcellular architecture prepared by 3D printing[75]; (e) Schematic of a cross-finger electrode 3D-printed[76]"
 
														 
													
													Table 3
Summary of advantages, disadvantages and applications of six dry electrode technologies"
| 干法电极技术 | 技术原理 | 优势 | 弊端 | 应用领域 | 
|---|---|---|---|---|
| 聚合物纤维化 | PTFE在高剪切力作用下纤维化 | 与现有的生产线兼容,可大规模生产 | 阳极不稳定,目前只能采用PTFE作为黏结剂 | 阴极,碳阳极,全固态电池的电极 | 
| 干法喷涂沉积 | 干粉混合物在高压下沉积 | 电极厚度和密度可控,可用于柔性电极 | 设备昂贵,生产环境要求高 | 阳极,阴极 | 
| 气相沉积 | 材料先蒸发汽化再沉积 | 多种汽化方法可选择 | 生产设备昂贵,规模扩大较难实现 | 小尺寸电极 | 
| 热熔挤压 | 颗粒混合、挤出、脱黏和烧结 | 可制备厚电极 | 工艺复杂,能耗高,需要牺牲黏结剂 | 用于大规模生产的阴极,碳阳极 | 
| 直接压制 | 活性材料充分混合后直接压制为电极 | 操作简单,黏结剂用量小 | 生产规模小,需要活性材料可压缩 | 阴极,阳极,全固态电池电极 | 
| 3D打印 | 材料熔融后逐层打印 | 电极厚度和形貌可定制 | 设备昂贵,生产规模小,活性材料含量低 | 微电子和可穿戴设备用电极 | 
| 1 | LI J L, FLEETWOOD J, BLAKE HAWLEY W, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2022, 122(1): 903-956. DOI: 10.1021/acs.chemrev.1c00565. | 
| 2 | 滕国营, 王新改, 孟海军, 等. 高功率储能器件的研究进展[J]. 储能科学与技术, 2024, 13(10): 3442-3452. DOI: 10.19799/j.cnki.2095-4239.2024.0312. | 
| TENG G Y, WANG X G, MENG H J, et al. Research progress of high-power energy storage devices[J]. Energy Storage Science and Technology, 2024, 13(10): 3442-3452. DOI: 10.19799/j.cnki.2095-4239.2024.0312. | |
| 3 | 廖雅贇, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. | 
| LIAO Y Y, ZHOU F, ZHANG Y X, et al. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. | |
| 4 | 宋元明, 刘亚杰, 金光, 等. 锂离子电池/超级电容器混合储能系统能量管理方法综述[J]. 储能科学与技术, 2024, 13(2): 652-668. DOI: 10.19799/j.cnki.2095-4239.2023.0568. | 
| SONG Y M, LIU Y J, JIN G, et al. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. DOI: 10.19799/j.cnki.2095-4239. 2023.0568. | |
| 5 | 李珂, 郝奕帆, 方振华, 等. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. DOI: 10.19799/j.cnki.2095-4239.2023.0501. | 
| LI K, HAO Y F, FANG Z H, et al. Development and military application analysis of high-power chemical power supply system[J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. DOI: 10.19799/j.cnki.2095-4239.2023.0501. | |
| 6 | ZHAN C, CAI F, AMINE K, et al. Advanced lithium batteries for automobile applications at ABAA-9[J]. ACS Energy Letters, 2017, 2(7): 1628-1631. DOI: 10.1021/acsenergylett.7b00407. | 
| 7 | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | 
| CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
| 8 | HAWLEY W B, LI J L. Electrode manufacturing for lithium-ion batteries—Analysis of current and next generation processing[J]. Journal of Energy Storage, 2019, 25: 100862. DOI: 10.1016/j.est.2019.100862. | 
| 9 | WOOD D L, WOOD M, LI J L, et al. Perspectives on the relationship between materials chemistry and roll-to-roll electrode manufacturing for high-energy lithium-ion batteries[J]. Energy Storage Materials, 2020, 29: 254-265. DOI: 10.1016/j.ensm. 2020.04.036. | 
| 10 | KRAYTSBERG A, EIN-ELI Y. Conveying advanced Li-ion battery materials into practice the impact of electrode slurry preparation skills[J]. Advanced Energy Materials, 2016, 6(21): 1600655. DOI: 10.1002/aenm.201600655. | 
| 11 | PETTINGER K H, DONG W. When does the operation of a battery become environmentally positive?[J]. Journal of the Electrochemical Society, 2017, 164(1): A6274-A6277. DOI: 10.1149/2.0401701jes. | 
| 12 | BAUER W, NÖTZEL D, WENZEL V, et al. Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries[J]. Journal of Power Sources, 2015, 288: 359-367. DOI: 10.1016/j.jpowsour.2015.04.081. | 
| 13 | JEONG D, LEE J. Electrode design optimization of lithium secondary batteries to enhance adhesion and deformation capabilities[J]. Energy, 2014, 75: 525-533. DOI: 10.1016/j.energy. 2014.08.013. | 
| 14 | LIU J, LUDWIG B, LIU Y T, et al. Scalable dry printing manufacturing to enable long-life and high energy lithium-ion batteries[J]. Advanced Materials Technologies, 2017, 2(10): 1700106. DOI: 10.1002/admt.201700106. | 
| 15 | AL-SHROOFY M, ZHANG Q L, XU J G, et al. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2017, 352: 187-193. DOI: 10.1016/j.jpowsour. 2017.03.131. | 
| 16 | GAO Z J, FU J Z, PODDER C, et al. Particle interactions during dry powder mixing and their effect on solvent-free manufactured electrode properties[J]. Journal of Energy Storage, 2024, 83: 110605. DOI: 10.1016/j.est.2024.110605. | 
| 17 | KWON K, KIM J, HAN S, et al. Low-resistance LiFePO4 thick film electrode processed with dry electrode technology for high-energy-density lithium-ion batteries[J]. Small Science, 2024, 4(5): 2300302. DOI: 10.1002/smsc.202300302. | 
| 18 | 郭德超, 郭义敏, 张啟文, 等. 锂离子电池用无溶剂干法电极的制备及其性能研究[J]. 储能科学与技术, 2021, 10(4): 1311-1316. DOI: 10.19799/j.cnki.2095-4239.2021.0081. | 
| GUO D C, GUO Y M, ZHANG Q W, et al. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. DOI: 10.19799/j.cnki.2095-4239.2021.0081. | |
| 19 | LU Y, ZHAO C Z, YUAN H, et al. Dry electrode technology, the rising star in solid-state battery industrialization[J]. Matter, 2022, 5(3): 876-898. DOI: 10.1016/j.matt.2022.01.011. | 
| 20 | ŻENKIEWICZ M. Methods for the calculation of surface free energy of solids[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 24(1): 137. | 
| 21 | LUDWIG B, LIU J, CHEN I M, et al. Understanding interfacial-energy-driven dry powder mixing for solvent-free additive manufacturing of Li-ion battery electrodes[J]. Advanced Materials Interfaces, 2017, 4(21): 1700570. DOI: 10.1002/admi.201700570. | 
| 22 | ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Letters, 2021, 21(12): 5233-5239. DOI: 10.1021/acs.nanolett.1c01344. | 
| 23 | HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Materials, 2019, 21: 390-398. DOI: 10.1016/j.ensm.2019.05.033. | 
| 24 | LUDWIG B, ZHENG Z F, SHOU W, et al. Solvent-free manufacturing of electrodes for lithium-ion batteries[J]. Scientific Reports, 2016, 6: 23150. DOI: 10.1038/srep23150. | 
| 25 | HELMERS L, FROBÖSE L, FRIEDRICH K, et al. Sustainable solvent-free production and resulting performance of polymer electrolyte-based all-solid-state battery electrodes[J]. Energy Technology, 2021, 9(3): 2000923. DOI: 10.1002/ente.202000923. | 
| 26 | MAUREL A, ARMAND M, GRUGEON S, et al. Poly(ethylene oxide)–LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing[J]. Journal of the Electrochemical Society, 2020, 167(7): 070536. DOI: 10.1149/1945-7111/ab7c38. | 
| 27 | JARDIEL T, SOTOMAYOR M E, LEVENFELD B, et al. Optimization of the processing of 8-YSZ powder by powder injection molding for SOFC electrolytes[J]. International Journal of Applied Ceramic Technology, 2008, 5(6): 574-581. DOI: 10.1111/j.1744-7402.2008.02286.x. | 
| 28 | DE LA TORRE-GAMARRA C, SOTOMAYOR M E, SANCHEZ J Y, et al. High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries[J]. Journal of Power Sources, 2020, 458: 228033. DOI: 10.1016/j.jpowsour.2020.228033. | 
| 29 | EL KHAKANI S, VERDIER N, LEPAGE D, et al. Melt-processed electrode for lithium ion battery[J]. Journal of Power Sources, 2020, 454: 227884. DOI: 10.1016/j.jpowsour.2020.227884. | 
| 30 | BIN HAMZAH H H, KEATTCH O, COVILL D, et al. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes[J]. Scientific Reports, 2018, 8(1): 9135. DOI: 10.1038/s41598-018-27188-5. | 
| 31 | WOOD D L, QUASS J D, LI J L, et al. Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP[J]. Drying Technology, 2018, 36(2): 234-244. DOI: 10.1080/07373937.2017.1319855. | 
| 32 | YAO W L, CHOUCHANE M, LI W K, et al. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating[J]. Energy & Environmental Science, 2023, 16(4): 1620-1630. DOI: 10.1039/D2EE03840D. | 
| 33 | ZACKRISSON M, AVELLÁN L, ORLENIUS J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-Critical issues[J]. Journal of Cleaner Production, 2010, 18(15): 1519-1529. DOI: 10.1016/j.jclepro.2010.06.004. | 
| 34 | ERAKCA M, BAUMANN M, BAUER W, et al. Energy flow analysis of laboratory scale lithium-ion battery cell production[J]. iScience, 2021, 24(5): 102437. DOI: 10.1016/j.isci.2021.102437. | 
| 35 | YUAN C, DENG Y L, LI T H, et al. Manufacturing energy analysis of lithium ion battery pack for electric vehicles[J]. CIRP Annals, 2017, 66(1): 53-56. DOI: 10.1016/j.cirp.2017.04.109. | 
| 36 | WANG C H, YU R Z, DUAN H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J]. ACS Energy Letters, 2022, 7(1): 410-416. DOI: 10.1021/acsenergylett.1c02261. | 
| 37 | KATO Y, SHIOTANI S, MORITA K, et al. All-solid-state batteries with thick electrode configurations[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 607-613. DOI: 10.1021/acs.jpclett.7b02880. | 
| 38 | BRYNTESEN S N, STRØMMAN A H, TOLSTOREBROV I, et al. Opportunities for the state-of-the-art production of LIB electrodes-a review[J]. Energies, 2021, 14(5): 1406. DOI: 10.3390/en14051406. | 
| 39 | ROLLAG K, JUAREZ-ROBLES D, DU Z J, et al. Drying temperature and capillarity-driven crack formation in aqueous processing of Li-ion battery electrodes[J]. ACS Applied Energy Materials, 2019, 2(6): 4464-4476. DOI: 10.1021/acsaem.9b00704. | 
| 40 | LI Y X, WU Y J, WANG Z X, et al. Progress in solvent-free dry-film technology for batteries and supercapacitors[J]. Materials Today, 2022, 55: 92-109. DOI: 10.1016/j.mattod.2022.04.008. | 
| 41 | ZHANG Y, LU S, WANG Z S, et al. Recent technology development in solvent-free electrode fabrication for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113515. DOI: 10.1016/j.rser.2023.113515. | 
| 42 | 陈艺, 秦琪, 赵龙, 等. 新型储能技术的中国专利布局分析[J]. 储能科学与技术, 2024, 13(6): 2089-2098. DOI: 10.19799/j.cnki.2095-4239.2024.0006. | 
| CHEN Y, QIN Q, ZHAO L, et al. Analysis of China's patent landscape for new energy storage technologies[J]. Energy Storage Science and Technology, 2024, 13(6): 2089-2098. DOI: 10.19799/j.cnki.2095-4239.2024.0006. | |
| 43 | 何凤荣, 张啟文, 郭德超, 等. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. DOI: 10.19799/j.cnki.2095-4239.2021.0702. | 
| HE F R, ZHANG Q W, GUO D C, et al. Influences of electrode structure on the electrical properties of(NMC+AC)/HC hybrid capacitor[J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. DOI: 10.19799/j.cnki.2095-4239.2021.0702. | |
| 44 | 郑超, 周旭峰, 刘兆平, 等. 活性石墨烯/活性炭干法复合电极片制备及其在超级电容器中的应用[J]. 储能科学与技术, 2016, 5(4): 486-491. DOI: 10.12028/j.issn.2095-4239.2016.04.012. | 
| ZHENG C, ZHOU X F, LIU Z P, et al. Preparation of activated graphene/activated carbon dry composite electrode and its application in supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(4): 486-491. DOI: 10.12028/j.issn.2095-4239.2016.04.012. | |
| 45 | 刘凤丹, 薛龙均. 成型工艺对超级电容器活性炭电极性能的影响[J]. 电子元件与材料, 2017, 36(2): 25-28. DOI: 10.14106/j.cnki.1001-2028.2017.02.006. | 
| LIU F D, XUE L J. Influences of the fabrication technology on the properties of activited carbon electrode in ultracapaciors[J]. Electronic Components and Materials, 2017, 36(2): 25-28. DOI: 10.14106/j.cnki.1001-2028.2017.02.006. | |
| 46 | 郭义敏, 郭德超, 张啟文, 等. 电极纤维化结构对超级电容器电性能的影响[J]. 电子元件与材料, 2021, 40(6): 530-535. DOI: 10.14106/j.cnki.1001-2028.2021.0179. | 
| GUO Y M, GUO D C, ZHANG Q W, et al. Influences of electrode fibrous structure on the electrical performances of supercapacitor[J]. Electronic Components and Materials, 2021, 40(6): 530-535. DOI: 10.14106/j.cnki.1001-2028.2021.0179. | |
| 47 | 张凯. 四种活性炭双电层电容器电极制备工艺与电容特性[D]. 哈尔滨: 哈尔滨工业大学, 2017. | 
| ZHANG K. Study on preparation process and capacitive properties of the supercapacitors based on four activated carbons[D]. Harbin: Harbin Institute of Technology, 2017. | |
| 48 | BRETON E J, WOLF J D, WORDEN D. Article of fibrillated polytetrafluoroethylene containing high volumes of particulate material and methods of making and using same: US19740499583[P/OL]. 1980-03-18. https://www.freepatentsonline.com/4194040.html. | 
| 49 | SINGER R M. Catalytic dry powder material for fuel cell electrodes comprising fluorocarbon polymer and precatalyzed carbon: US4177159[P/OL]. 1979-12-04. https://www.freepatentsonline.com/4177159.html. | 
| 50 | BERNSTEIN P G R, COFFEY N J, JAMES P. Production of a cell electrode system: US4320184[P/OL]. 1982-03-16. https://www.freepatentsonline.com/4320184.html. | 
| 51 | MITCHELL P S, XI X M, ZOU B, et al. Dry particle packaging systems and methods of making same: US20060246343[P/OL]. 2006-11-02. https://www.freepatentsonline.com/y2006/0246343.html. | 
| 52 | MITCHELL P S, XI X M, ZHONG L D. Recyclable dry-particle based adhesive electrode and methods of making same: US11430613[P/OL]. 2022-08-30. https://www.freepatentsonline.com/11430613.html. | 
| 53 | ZHOU H T, LIU M H, GAO H Q, et al. Dense integration of solvent-free electrodes for Li-ion supercabattery with boosted low temperature performance[J]. Journal of Power Sources, 2020, 473: 228553. DOI: 10.1016/j.jpowsour.2020.228553. | 
| 54 | ZHANG Y D, TIAN J, XIAO F, et al. B cell-activating factor and its targeted therapy in autoimmune diseases[J]. Cytokine & Growth Factor Reviews, 2022, 64: 57-70. DOI: 10.1016/j.cytogfr. 2021.11.004. | 
| 55 | ZHANG Y, LU S, LOU F L, et al. Leveraging synergies by combining polytetrafluorethylene with polyvinylidene fluoride for solvent-free graphite anode fabrication[J]. Energy Technology, 2022, 10(11): 2200732. DOI: 10.1002/ente.202200732. | 
| 56 | ZHONG L. Low cost high performance electrode for energy storage devices and systems and method of making same: US20140238576 [P/OL]. 2014-08-28. https://www.freepatentsonline.com/y2014/0238576.html. | 
| 57 | ZHONG L S, SHAW E, KIM B K. Dry electrode manufacture with lubricated active material mixture: US20220077453[P/OL]. 2022-03-10. https://www.freepatentsonline.com/y2022/0077453.html. | 
| 58 | ZHONG L S, QIU K, ZEA M, SHAW E. Dry electrode manufacture by temperature activation method: US11616218[P/OL]. 2023-03-28. https://www.freepatentsonline.com/11616218.html. | 
| 59 | SASAKI H T, NOGUCHI T. Lithium ion secondary battery: US20150064554[P/OL]. 2015-03-05. https://www.freepatentsonline.com/y2015/0064554.html. | 
| 60 | ORISAKA E N-S, SAKASHITA Y N, NAKATANI R K, et al. Powder supply device for secondary battery and apparatus for manufacturing electrode body: US20150255778A1[P/OL]. 2015-09-10. https://www.freepatentsonline.com/y2015/0255778.html. | 
| 61 | SCHÄLICKE G, LANDWEHR I, DINTER A, et al. Solvent-free manufacturing of electrodes for lithium-ion batteries via electrostatic coating[J]. Energy Technology, 2020, 8(2): 1900309. DOI: 10.1002/ente.201900309. | 
| 62 | WANG M, HU J Z, WANG Y K, et al. The influence of polyvinylidene fluoride (PVDF) binder properties on LiNi0.33Co0.33Mn0.33O2 (NMC) electrodes made by a dry-powder-coating process[J]. ECS Meeting Abstracts, 2019, MA2019-02(5): 367. DOI: 10.1149/ma2019-02/5/367. | 
| 63 | SCROSATI B. Recent advances in lithium solid state batteries[J]. Journal of Applied Electrochemistry, 1972, 2(3): 231-238. DOI: 10.1007/BF02354981. | 
| 64 | KANEHORI K, MATSUMOTO K, MIYAUCHI K, et al. Thin film solid electrolyte and its application to secondary lithium cell[J]. Solid State Ionics, 1983, 9: 1445-1448. DOI: 10.1016/0167-2738(83)90192-3. | 
| 65 | HAMPDEN-SMITH M J, KODAS T T. Chemical vapor deposition of metals: Part 1. an overview of CVD processes[J]. Chemical Vapor Deposition, 1995, 1(1): 8-23. DOI: 10.1002/cvde. 19950010103. | 
| 66 | CHIU K F. Lithium cobalt oxide thin films deposited at low temperature by ionized magnetron sputtering[J]. Thin Solid Films, 2007, 515(11): 4614-4618. DOI: 10.1016/j.tsf.2006.11.073. | 
| 67 | SHIRAKI S, OKI H, TAKAGI Y, et al. Fabrication of all-solid-state battery using epitaxial LiCoO2 thin films[J]. Journal of Power Sources, 2014, 267: 881-887. DOI: 10.1016/j.jpowsour. 2014.05.133. | 
| 68 | BOUGUERN M D, MADIKERE RAGHUNATHA REDDY A K, LI X, et al. Engineering dry electrode manufacturing for sustainable lithium-ion batteries[J]. Batteries, 2024, 10(1): 39. DOI: 10.3390/batteries10010039. | 
| 69 | SOTOMAYOR M E, DE LA TORRE-GAMARRA C, LEVENFELD B, et al. Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries[J]. Journal of Power Sources, 2019, 437: 226923. DOI: 10.1016/j.jpowsour. 2019.226923. | 
| 70 | ASTAFYEVA K, DOUSSET C, BUREAU Y, et al. High energy Li-ion electrodes prepared via a solventless melt process[J]. Batteries & Supercaps, 2020, 3(4): 341-343. DOI: 10.1002/batt.201900187. | 
| 71 | WIEGMANN E, CAVERS H, DIENER A, et al. Semi-dry extrusion-based processing for graphite anodes: Morphological insights and electrochemical performance[J]. Energy Technology, 2023, 11(9): 2300341. DOI: 10.1002/ente.202300341. | 
| 72 | KIRSCH DYLAN J, LACEY STEVEN D, KUANG Y D, et al. Scalable dry processing of binder-free lithium-ion battery electrodes enabled by holey graphene[J]. ACS Applied Energy Materials, 2019, 2(5): 2990-2997. | 
| 73 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. DOI: 10.1038/s41560-020-0575-z. | 
| 74 | AUVERGNIOT J, CASSEL A, LEDEUIL J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries[J]. Chemistry of Materials, 2017, 29(9): 3883-3890. DOI: 10.1021/acs.chemmater.6b04990. | 
| 75 | SUN K, WEI T S, AHN B Y, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Advanced Materials, 2013, 25(33): 4539-4543. DOI: 10.1002/adma.201301036. | 
| 76 | FU K, WANG Y B, YAN C Y, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials, 2016, 28(13): 2587-2594. DOI: 10.1002/adma. 201505391. | 
| 77 | WEI T S, AHN B Y, GROTTO J, et al. 3D printing of customized Li-ion batteries with thick electrodes[J]. Advanced Materials, 2018, 30(16): 1703027. DOI: 10.1002/adma.201703027. | 
| 78 | LYU Z Y, LIM G J H, KOH J J, et al. Design and manufacture of 3D-printed batteries[J]. Joule, 2021, 5(1): 89-114. DOI: 10.1016/j.joule.2020.11.010. | 
| 79 | FU K, YAO Y G, DAI J Q, et al. Progress in 3D printing of carbon materials for energy-related applications[J]. Advanced Materials, 2017, 29(9): 1603486. DOI: 10.1002/adma.201603486. | 
| 80 | ELDER B, NEUPANE R, TOKITA E, et al. Nanomaterial patterning in 3D printing[J]. Advanced Materials, 2020, 32(17): 1907142. DOI: 10.1002/adma.201907142. | 
| [1] | Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2 [J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339. | 
| [2] | Wei CAO, Fei CHEN, Xiangdong KONG, Zhicheng ZHU, Xuebing HAN, Languang LU, Yuejiu ZHENG. Progress of coating process for lithium-ion battery electrodes [J]. Energy Storage Science and Technology, 2025, 14(1): 90-103. | 
| [3] | Zhiyong WANG, Junyao CAI, Yingqi SHE, Shulin ZHONG, Kanghua PAN. Surface-modification of graphite with N-heterocyclic conducting polymers as high performance anodes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2511-2518. | 
| [4] | Jingjing LEI, Zehao LI, Binbin CHEN, Denggao HUANG. Estimation of internal battery temperature based on electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2024, 13(8): 2823-2834. | 
| [5] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. | 
| [6] | Chunzheng LIU, Peipei LAI, Zhuo SUN, Er NIE, Zhejuan ZHANG. Dented surface on silica-carbon particles to improve the electrochemical performance of lithium-ion battery anode [J]. Energy Storage Science and Technology, 2024, 13(4): 1302-1309. | 
| [7] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. | 
| [8] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. | 
| [9] | Panchun TANG, Rong YAN, Can ZHANG, Ze SUN. Simulation of air- and liquid-cooled thermal management of stacked automotive supercapacitors [J]. Energy Storage Science and Technology, 2024, 13(2): 483-491. | 
| [10] | Zhifeng SONG, Weifeng DUAN, Lei MA. Simulation of power storage power regulation system supported by ultracapacitor technology [J]. Energy Storage Science and Technology, 2024, 13(2): 623-625. | 
| [11] | Yihan Li, Shigang LU, Jing WANG, Wangjun ZHA, Zhenghang DAI, Yitong GUO, Zexi YANG. Effect of irreversible lithium plating at low temperature on the performance degradation of LiFePO4 lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(10): 3656-3665. | 
| [12] | Yuchao QIU, Baishuang CHEN, Cheng CHEN, Ruipeng QIAN. Quasi-static constitutive modeling of lithium-ion battery materials under compression [J]. Energy Storage Science and Technology, 2024, 13(10): 3518-3522. | 
| [13] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. | 
| [14] | Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment [J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. | 
| [15] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
