Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (10): 3996-4008.doi: 10.19799/j.cnki.2095-4239.2025.0194
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Huawei WU1,2(
), Chengze HE1,2, Qiang HONG1,2,4, Xiaogao ZHOU3, Mingjin LI4, Yajuan GU5
Received:2025-03-03
Revised:2025-03-25
Online:2025-10-28
Published:2025-10-20
Contact:
Huawei WU
E-mail:whw_xy@163.com
CLC Number:
Huawei WU, Chengze HE, Qiang HONG, Xiaogao ZHOU, Mingjin LI, Yajuan GU. IFFRLS-IMMUKF-based estimation of the state of charge of lithium iron phosphate batteries for commercial vehicles[J]. Energy Storage Science and Technology, 2025, 14(10): 3996-4008.
| [1] | 沈佳妮, 贺益君, 马紫峰. 基于模型的锂离子电池SOC及SOH估计方法研究进展[J]. 化工学报, 2018, 69(1): 309-316. DOI: 10.11949/j.issn.0438-1157.20171097. |
| SHEN J N, HE Y J, MA Z F. Progress of model based SOC and SOH estimation methods for lithium-ion battery[J]. CIESC Journal, 2018, 69(1): 309-316. DOI: 10.11949/j.issn.0438-1157. 20171097. | |
| [2] | 宋磊, 陆春光, 刘琳, 等. 基于修正安时积分法的磷酸铁锂电池荷电状态估计[J]. 郑州大学学报(工学版), 2023, 44(6): 84-90. DOI: 10. 13705/j.issn.1671-6833.2023.06.003. |
| SONG L, LU C G, LIU L, et al. State of charge estimation of LiFePO4 battery based on modified amper-hour integral method[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(6): 84-90. DOI: 10.13705/j.issn.1671-6833.2023.06.003. | |
| [3] | 王少华. 电动汽车动力锂电池模型参数辨识和状态估计方法研究[D]. 长春: 吉林大学, 2021. DOI: 10.27162/d.cnki.gjlin.2021. 007576. |
| WANG S H. Research on model parameter identification and state estimation method of power lithium battery for electric vehicle[D]. Changchun: Jilin University, 2021. DOI: 10.27162/d.cnki.gjlin.2021.007576. | |
| [4] | 田从丰, 汪文浦, 张风奇, 等. 电动车辆动力电池SOC估计方法研究进展及展望[J]. 中国公路学报, 2025, 38(5): 224-247. DOI: 10.19721/j.cnki.1001-7372.2025.05.019. |
| TIAN C F, WANG W P, ZHANG F Q, et al. Research progress and prospects of state of charge estimation methods for electric vehicle power batteries[J]. China Journal of Highway and Transport, 2025, 38(5): 224-247. DOI: 10.19721/j.cnki.1001-7372.2025.05.019. | |
| [5] | 凌六一, 吴贤圆, 王星凯, 等. 基于FFRLS-AUKF的锂电池参数在线辨识及SOC估计[J]. 安徽理工大学学报(自然科学版), 2023, 43(1): 1-7. |
| LING L Y, WU X Y, WANG X K, et al. Online parameter identification and SOC estimation of lithium battery based on FFRLS-AUKF[J]. Journal of Anhui University of Science and Technology (Natural Science), 2023, 43(1): 1-7. | |
| [6] | LIANG Y W, WANG S L, FAN Y C, et al. An error covariance correction-adaptive extended Kalman filter based on piecewise forgetting factor recursive least squares method for the state-of-charge estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 68: 107629. DOI: 10.1016/j.est.2023.107629. |
| [7] | PENG J K, LUO J Y, HE H W, et al. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries[J]. Applied Energy, 2019, 253: 113520. DOI: 10.1016/j.apenergy.2019.113520. |
| [8] | RESHMA P, MANOHAR V J. Collaborative evaluation of SoC, SoP and SoH of lithium-ion battery in an electric bus through improved remora optimization algorithm and dual adaptive Kalman filtering algorithm[J]. Journal of Energy Storage, 2023, 68: 107573. DOI: 10.1016/j.est.2023.107573. |
| [9] | SUN C, LIU S L, SUN B. Joint estimation of SOC and SOH of lithium battery based on multi-time scale EKF-ASRCKF algorithm[J]. Journal of Physics: Conference Series, 2023, 2477(1): 012015. DOI: 10.1088/1742-6596/2477/1/012015. |
| [10] | LI Z X, SHEN S Y, ZHOU Z, et al. Novel method for modelling and adaptive estimation for SOC and SOH of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 62: 106927. DOI: 10.1016/j.est.2023.106927. |
| [11] | XIA B Z, LAO Z Z, ZHANG R F, et al. Online parameter identification and state of charge estimation of lithium-ion batteries based on forgetting factor recursive least squares and nonlinear Kalman filter[J]. Energies, 2018, 11(1): 3. DOI: 10.3390/en11010003. |
| [12] | XIAO W J, WANG S L, YU C M, et al. Online parameter identification and state of charge estimation of lithium-ion batteries based on improved artificial fish swarms forgetting factor least squares and differential evolution extended Kalman filter[J]. Journal of the Electrochemical Society, 2022, 169(12): 120534. DOI: 10.1149/1945-7111/acaa5b. |
| [13] | 徐伟杰. 基于模型法的锂电池SOC估计及均衡控制研究[D]. 秦皇岛: 燕山大学, 2023. DOI: 10.27440/d.cnki.gysdu.2023.000237. |
| [14] | 李堂, 黄康, 毛行奎, 等. 基于EKF算法的动力锂离子电池SOC估计[J]. 电器与能效管理技术, 2023(9): 62-68, 75. DOI: 10.16628/j.cnki.2095-8188.2023.09.010. |
| LI T, HUANG K, MAO X K, et al. SOC estimation of power lithium-ion battery based on EKF algorithm[J]. Electrical & Energy Management Technology, 2023(9): 62-68, 75. DOI: 10.16628/j.cnki.2095-8188.2023.09.010. | |
| [15] | 张远进, 吴华伟, 叶从进. 基于AUKF-BP神经网络的锂电池SOC估算[J]. 储能科学与技术, 2021, 10(1): 237-241. DOI: 10.19799/j.cnki.2095-4239.2020.0285. |
| ZHANG Y J, WU H W, YE C J. Estimation of the SOC of a battery based on the AUKF-BP algorithm[J]. Energy Storage Science and Technology, 2021, 10(1): 237-241. DOI: 10.19799/j.cnki. 2095-4239.2020.0285. | |
| [16] | 王建锋, 张照震, 李平. 基于加权自适应递推最小二乘法与EKF的锂离子电池SOC估计[J]. 汽车技术, 2021(10): 16-22. DOI: 10.19620/j.cnki.1000-3703.20200990. |
| WANG J F, ZHANG Z Z, LI P. State of charge estimation for lithium-ion battery based on adaptive recursive weighted least squares and extended Kalman filter algorithm[J]. Automobile Technology, 2021(10): 16-22. DOI: 10.19620/j.cnki.1000-3703.20200990. | |
| [17] | SUN X D, JI J R, REN B Y, et al. Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium-ion battery[J]. Energies, 2019, 12(12): 2242. DOI: 10.3390/en12122242. |
| [18] | 夏小虎, 刘明. 基于交互式多模型卡尔曼滤波的电池荷电状态估计[J]. 信息与控制, 2017, 46(5): 519-524. DOI: 10.13976/j.cnki.xk. 2017.0519. |
| XIA X H, LIU M. Battery state-of-charge estimation using interactive multiple-model Kalman filter[J]. Information and Control, 2017, 46(5): 519-524. DOI: 10.13976/j.cnki.xk.2017. 0519. | |
| [19] | 谭霁宬, 颜学龙. 基于交互式多模型无迹卡尔曼滤波的锂电池荷电状态估计[J]. 科学技术与工程, 2019, 19(12): 170-175. |
| TAN J C, YAN X L. Estimation of state-of-charge for lithium-ion battery by interactive multiple model unscented Kalman filter[J]. Science Technology and Engineering, 2019, 19(12): 170-175. | |
| [20] | 李锦满, 李儒欢, 李浩南, 等. 基于无迹卡尔曼滤波的动力电池状态估计[J]. 电池, 2024, 54(3): 340-343. DOI:10.19535/j.1001-1579. 2024.03.010. |
| LI J M, LI R H, LI H N, et al. State estimation for power battery based on unscented Kalman filter[J]. Dianchi(Battery Bimonthly), 2024, 54(3): 340-343. DOI:10.19535/j.1001-1579.2024.03.010. | |
| [21] | 吴华伟, 洪强, 陈运星, 等. 基于CSO-AUKF的锂电池SOC估算方法[J]. 重庆交通大学学报(自然科学版), 2024, 43(9): 118-126. |
| WU H W, HONG Q, CHEN Y X, et al. Lithium battery SOC estimation method based on CSO-AUKF[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(9): 118-126. | |
| [22] | 高铭琨, 徐海亮, 吴明铂. 基于等效电路模型的动力电池SOC估计方法综述[J]. 电气工程学报, 2021, 16(1): 90-102. |
| GAO M K, XU H L, WU M B. Review of SOC estimation methods for power battery based on equivalent circuit model[J]. Journal of Electrical Engineering, 2021, 16(1): 90-102. | |
| [23] | CHOPRA N, MOHSIN ANSARI M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications[J]. Expert Systems with Applications, 2022, 198: 116924. DOI: 10. 1016/j.eswa.2022.116924. |
| [24] | 黄锐. 基于可变遗忘因子递推最小二乘法的三元锂电池荷电状态估计[D]. 重庆: 重庆大学, 2022. DOI: 10.27670/d.cnki.gcqdu.2022. 002239. |
| [25] | 赵可沦, 江境宏, 邓进, 等. 基于遗忘因子递推最小二乘法的锂电池等效电路模型参数辨识方法[J]. 电子测量技术, 2022, 45(16): 87-92. DOI: 10.19651/j.cnki.emt.2209936. |
| ZHAO K L, JIANG J H, DENG J, et al. Parameter identification method of lithium battery equivalent circuit model based on forgetting factor recursive least squares[J]. Electronic Measurement Technology, 2022, 45(16): 87-92. DOI: 10.19651/j.cnki.emt.2209936. | |
| [26] | 张武, 孙士山, 张家福. 基于自适应无迹卡尔曼滤波的动力电池SOC估计[J]. 电源技术, 2021, 45(1): 14-17. DOI: 10.3969/j.issn.1002-087X.2021.01.004. |
| ZHANG W, SUN S S, ZHANG J F. SOC estimation of power batteries based on adaptive unscented Kalman filter[J]. Chinese Journal of Power Sources, 2021, 45(1): 14-17. DOI: 10.3969/j.issn.1002-087X.2021.01.004. |
| [1] | Ye CHEN, Jin LI, Ruilani ZHAO, Shaoyu ZHANG, Yuxi CHU, Kang YANG, Xiaoxue LIAO, Bo JIANG, Ping ZHUO. Comparative experimental study on thermal runaway propagation of battery modules under different states of charge [J]. Energy Storage Science and Technology, 2025, 14(9): 3402-3413. |
| [2] | Xiaolan WU, Yongzhi YANG, Zhifeng BAI, Haichang GUO, Guifang GUO, Jinhua ZHANG. SOC-balancing droop control strategy using secondary voltage compensation for distributed energy storage units in islanded DC microgrids [J]. Energy Storage Science and Technology, 2025, 14(8): 3160-3169. |
| [3] | Haoyuan MA, Yan WU, Tong WANG, Jinyang HU, Jia LI, Yuqi HUANG. State of charge estimation of lithium iron phosphate batteries based on force-electric-temperature signals and a CNN-BiLSTM model [J]. Energy Storage Science and Technology, 2025, 14(7): 2865-2874. |
| [4] | Haoran LI, Zitao WANG. Active control method for power restoration in distribution networks considering the characteristics of distributed energy storage SOC [J]. Energy Storage Science and Technology, 2025, 14(7): 2833-2843. |
| [5] | Huimin FAN, Haohong PENG, Hui MENG, Menghong TANG, Haohao YI, Jing DING, Jincheng LIU, Chengshan XU, Xuning FENG. Research and simulation analysis of swelling force characteristics in energy storage battery modules [J]. Energy Storage Science and Technology, 2025, 14(6): 2488-2497. |
| [6] | Haifei SONG, Lehong WANG, Yidong YUAN, Tianting ZHAO, Jie CHEN. Battery sampling voltage filtering and estimation based on improved Kalman filter algorithm [J]. Energy Storage Science and Technology, 2025, 14(5): 2106-2113. |
| [7] | Honghui WANG, Jiaxin LI, Deren CHU, Yanyi LI, Ting XU. Study on the electrochemical performance failure mechanisms and thermal safety of lithium iron phosphate battery during storage conditions [J]. Energy Storage Science and Technology, 2025, 14(5): 1797-1805. |
| [8] | Zhen YAN, Qiang LIU, Huibin LI, Jun ZHANG, Yahui JIANG. Power optimization management method for photovoltaic microgrids based on the state of charge of hybrid energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2067-2077. |
| [9] | Tao WANG, Tian MAO, Baorong ZHOU, Wenmeng ZHAO, Hao HUA. Exploration of virtual synchronous machine control based on energy storage state of charge [J]. Energy Storage Science and Technology, 2025, 14(5): 2032-2034. |
| [10] | Tianhai ZHANG, Xiaolong YANG, Shuai ZHOU, Keyi TANG, Xin LIU. Optimization control method for distributed photovoltaic primary frequency regulation considering energy storage SOC [J]. Energy Storage Science and Technology, 2025, 14(10): 3796-3807. |
| [11] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
| [12] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
| [13] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
| [14] | Gaoqi LIAN, Min YE, Qiao WANG, Yan LI, Yuchuan MA, Yiding SUN, Penghui DU. State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter [J]. Energy Storage Science and Technology, 2024, 13(5): 1667-1676. |
| [15] | Lin HE, Jiangyan LIU, Bin LIU, Kuining LI, Shuai DAI. Generalized impact of data distribution diversity on SOC prediction of lithium battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1677-1687. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||