Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (10): 3785-3795.doi: 10.19799/j.cnki.2095-4239.2025.0373
• Energy Storage System and Engineering • Previous Articles Next Articles
Guohui FENG(
), Weidong LU, Xiru WANG, Kailiang HUANG, Xiaoke TIAN
Received:2025-04-16
Revised:2025-04-30
Online:2025-10-28
Published:2025-10-20
Contact:
Guohui FENG
E-mail:fengguohui888@163.com
CLC Number:
Guohui FENG, Weidong LU, Xiru WANG, Kailiang HUANG, Xiaoke TIAN. Influence of operational parameters and intermittent start-stop strategy on thermal storage performance of ground heat exchangers[J]. Energy Storage Science and Technology, 2025, 14(10): 3785-3795.
| [1] | 中国建筑节能协会, 重庆大学城乡建设与发展研究院. 中国建筑能耗与碳排放研究报告(2023年)[J]. 建筑, 2024(2): 46-59. |
| China Association of Building Energy Efficiency, Institute of Urban-Rural Construction and Development, Chongqing University. Research report on building energy consumption and carbon emissions in China (2023)[J]. Construction and Architecture, 2024(2): 46-59. | |
| [2] | 住房和城乡建设部印发«"十四五" 建筑节能与绿色建筑发展规划»[J]. 智能建筑与智慧城市, 2022(4): 4. |
| The ministry of housing and urban-rural development issued the "14th Five-Year Plan" for building energy conservation and green building development[J]. Intelligent Building & Smart City, 2022(4): 4. | |
| [3] | 王子逸, 徐玉杰, 周学志, 等. 跨季节复合储热系统储/释热特性[J]. 储能科学与技术, 2020, 9(6): 1837-1846. DOI: 10.19799/j.cnki. 2095-4239.2020.0101. |
| WANG Z Y, XU Y J, ZHOU X Z, et al. Storage and release characteristics of seasonal composite thermal storage system[J]. Energy Storage Science and Technology, 2020, 9(6): 1837-1846. DOI: 10.19799/j.cnki.2095-4239.2020.0101. | |
| [4] | XU J, LI Y, WANG R Z, et al. Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application[J]. Energy, 2014, 67: 63-73. DOI: 10. 1016/j.energy.2014.01.049. |
| [5] | ZHANG C X, WANG Y S, LIU Y F, et al. Computational methods for ground thermal response of multiple borehole heat exchangers: A review[J]. Renewable Energy, 2018, 127: 461-473. DOI: 10.1016/j.renene.2018.04.083. |
| [6] | 徐德厚, 周学志, 徐玉杰, 等. 新型地下跨季节复合储热系统性能规律[J]. 储能科学与技术, 2021, 10(5): 1768-1776. DOI: 10.19799/j.cnki.2095-4239.2021.0334. |
| XU D H, ZHOU X Z, XU Y J, et al. Performance law of a new composite seasonal underground thermal storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1768-1776. DOI: 10.19799/j.cnki.2095-4239.2021.0334. | |
| [7] | 张哲菲, 刘洪涛, 刘攀峰, 等. 中深层地热地埋管实际运行影响因素研究[J]. 太阳能学报, 2022, 43(12): 503-509. DOI: 10.19912/j. 0254-0096.tynxb.2021-0604. |
| ZHANG Z F, LIU H T, LIU P F, et al. Study on actual operation and influencing factors of middle-deep geothermal buried pipe[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 503-509. DOI: 10. 19912/j.0254-0096.tynxb.2021-0604. | |
| [8] | 李贵, 韩宗伟, 杨灵艳, 等. 地埋管流体速度对地源热泵系统运行性能影响研究[J]. 可再生能源, 2022, 40(10): 1334-1339. DOI: 10. 13941/j.cnki.21-1469/tk.2022.10.006. |
| LI G, HAN Z W, YANG L Y, et al. Study on the influence of buried pipes fluid velocity on the operation performance of ground source heat pump system[J]. Renewable Energy Resources, 2022, 40(10): 1334-1339. DOI: 10.13941/j.cnki.21-1469/tk.2022. 10.006. | |
| [9] | ZHOU H, LV J, LI T L. Applicability of the pipe structure and flow velocity of vertical ground heat exchanger for ground source heat pump[J]. Energy and Buildings, 2016, 117: 109-119. DOI: 10. 1016/j.enbuild.2016.02.028. |
| [10] | YU Y, YU M Z, MAO Y D, et al. Operation characteristics of mid-deep U-type borehole heat exchanger with heat storage in non-heating seasons[J]. Journal of Energy Storage, 2025, 111: 115379. DOI: 10.1016/j.est.2025.115379. |
| [11] | 张炳钟, 晋华, 陈思青, 等. U型管进水温度对土壤温度场的影响[J]. 水电能源科学, 2022, 40(9): 185-189. DOI: 10.20040/j.cnki.1000-7709.2022.20212357. |
| ZHANG B Z, JIN H, CHEN S Q, et al. Effects of U-shaped pipe inlet water temperature on soil temperature field[J]. Water Resources and Power, 2022, 40(9): 185-189. DOI: 10.20040/j.cnki.1000-7709. 2022.20212357. | |
| [12] | CHOI J C, LEE S R, LEE D S. Numerical simulation of vertical ground heat exchangers: Intermittent operation in unsaturated soil conditions[J]. Computers and Geotechnics, 2011, 38(8): 949-958. DOI: 10.1016/j.compgeo.2011.07.004. |
| [13] | CAO X L, YUAN Y P, SUN L L, et al. Restoration performance of vertical ground heat exchanger with various intermittent ratios[J]. Geothermics, 2015, 54: 115-121. DOI: 10.1016/j.geothermics. 2014.12.005. |
| [14] | LI C F, MAO J F, XING Z L, et al. Analysis of geo-temperature restoration performance under intermittent operation of borehole heat exchanger fields[J]. Sustainability, 2016, 8(1): 35. DOI: 10. 3390/su8010035. |
| [15] | JALALUDDIN, MIYARA A, TSUBAKI K, et al. Experimental study of several types of ground heat exchanger using a steel pile foundation[J]. Renewable Energy, 2011, 36(2): 764-771. DOI: 10. 1016/j.renene.2010.08.011. |
| [16] | 吴晅, 路子业, 刘卫, 等. 单/双工况运行下地埋管周围土壤温度特性实验研究[J]. 太阳能学报, 2019, 40(6): 1780-1789. DOI: 10.19912/j.0254-0096.2019.06.039. |
| WU X, LU Z Y, LIU W, et al. Experimental study on temperature characteristics of soil around buried pipe under single or double operating conditions[J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1780-1789. DOI: 10.19912/j.0254-0096.2019.06.039. | |
| [17] | FU H Y, FANG L, YU M Z, et al. Influence and economic analysis of heat storage in the non-heating season on the heat extraction capacity of mid-deep borehole heat exchangers[J]. Energy and Buildings, 2023, 278: 112619. DOI: 10.1016/j.enbuild.2022.112619. |
| [18] | 吕艺青, 傅允准. 地源热泵系统夏季制冷间歇运行特性实验研究[J]. 太阳能学报, 2018, 39(2): 453-460. DOI: 10.19912/j.0254-0096. 2018.02.024. |
| LYU Y Q, FU Y Z. Experimental research of performance for refrigeration intermittent operation in summer of gshp system[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 453-460. DOI: 10. 19912/j.0254-0096.2018.02.024. | |
| [19] | 张志尧, 孙林娜, 魏俊辉, 等. 基于恒热流法和恒温法的岩土热物性试验分析研究[J]. 建筑节能(中英文), 2024, 52(7): 22-28. DOI: 10. 3969/j.issn.2096-9422.2024.07.005. |
| ZHANG Z Y, SUN L N, WEI J H, et al. Experimental analysis of rock-soil thermal properties based on constant heat flow method and constant temperature method[J]. Building Energy Efficiency, 2024, 52(7): 22-28. DOI: 10.3969/j.issn.2096-9422.2024.07.005. | |
| [20] | 中华人民共和国建设部, 国家质量监督检验检疫总局. 地源热泵系统工程技术规范: GB 50366—2005[S]. 北京: 中国建筑工业出版社, 2006. |
| Ministry of Construction of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Technical code for ground-source heat pump system: GB 50366—2005[S]. Beijing: China Architecture & Building Press, 2006. | |
| [21] | ESEN H, INALLI M. In-situ thermal response test for ground source heat pump system in Elazığ, Turkey[J]. Energy and Buildings, 2009, 41(4): 395-401. DOI: 10.1016/j.enbuild.2008.11.004. |
| [22] | NAGANO K, KATSURA T, TAKEDA S. Development of a design and performance prediction tool for the ground source heat pump system[J]. Applied Thermal Engineering, 2006, 26(14/15): 1578-1592. DOI: 10.1016/j.applthermaleng.2005.12.003. |
| [23] | ROTH P, GEORGIEV A, BUSSO A, et al. First in situ determination of ground and borehole thermal properties in Latin America[J]. Renewable Energy, 2004, 29(12): 1947-1963. DOI: 10.1016/j.renene. 2004.02.014. |
| [24] | 江然然, 龚红卫, 仇进明, 等. 并联双U型桩基埋管经济流速数值模拟[J]. 建筑科学, 2016, 32(12): 93-97, 172. DOI: 10.13614/j.cnki. 11-1962/tu.2016.12.13. |
| JIANG R R, GONG H W, QIU J M, et al. Numerical simulation of economic flow rate for buried pipes in parallel double U-piles[J]. Building Science, 2016, 32(12): 93-97, 172. DOI: 10.13614/j.cnki.11-1962/tu.2016.12.13. |
| [1] | Zheng CHEN, Jingyuan HU, Zhigang ZHAO, Jiangwei SHEN, Xuelei XIA, Fuxing WEI. Thermal characteristics study and optimization of air-cooling structures for dual-system battery packs [J]. Energy Storage Science and Technology, 2025, 14(9): 3463-3475. |
| [2] | Yanping YUAN, Qifa GAO, Nan ZHANG, Qinrong SUN. Numerical analysis of thermal storage characteristics of gradient-porosity copper foam-enhanced phase change materials [J]. Energy Storage Science and Technology, 2025, 14(8): 3100-3109. |
| [3] | Manquan LANG, Jun YANG, Zhongchun ZHANG, Jianlin PENG, Xulai YANG. Optimization of long slot-die head for Li-ion battery electrode coating [J]. Energy Storage Science and Technology, 2025, 14(6): 2339-2351. |
| [4] | Kangbin LIU, Haichuan SHEN, Guanjia ZHAO, Wentao XIE, Weiyao XUN. Experimental and numerical study of self-pressurized ultrahigh-pressure hydrothermal energy storage [J]. Energy Storage Science and Technology, 2025, 14(6): 2352-2361. |
| [5] | Yiming LI, Jinghao YAN, Li'na XI, Xiaobing SUN, Minggao LIU, Jie LI, Xiaoqin SUN. Numerical simulation study on the thermal storage performance of eccentric tubular phase change thermal storage units filled with composite phase change materials/metal foam [J]. Energy Storage Science and Technology, 2025, 14(5): 1931-1942. |
| [6] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
| [7] | Zhe HUANG, Zhiming YU, Zhaojin QING, Zhaoli ZHANG. Heat transfer characteristics of spherical thermal storage units based on PW/SEBS/EG composite phase change materials in a rotating fluid medium [J]. Energy Storage Science and Technology, 2025, 14(4): 1413-1423. |
| [8] | Guiyue SHI, Hailiang TAO, Zhitao ZUO, Jingxin LI, Jixiang CHEN, Jiaxi CHEN, Haisheng CHEN. Research on blade stress optimization method of axial flow compressor in compressed air energy storage system [J]. Energy Storage Science and Technology, 2025, 14(4): 1522-1532. |
| [9] | Xinyi NI, Xiaomeng XU, Luowei CAO, Le LI, Xuejia YAO, Guodong JIA. Simulation of ultrasonic guided wave propagation characteristics in multilayer heterogeneous absorber tubes with non-homogeneous salt films [J]. Energy Storage Science and Technology, 2025, 14(3): 1168-1176. |
| [10] | Yuehao CHEN, Sha CHEN, Huilan CHEN, Xiaoqin SUN, Yongqiang LUO. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs [J]. Energy Storage Science and Technology, 2025, 14(2): 648-658. |
| [11] | Xin XIE, Xinjie XUE, Changying ZHAO. Topology-optimized heattransfer structure design for fast melting in phase change thermal energy storage units [J]. Energy Storage Science and Technology, 2025, 14(10): 4027-4036. |
| [12] | Sizhe YUAN, Yuhao LIU, Changying ZHAO. Designing a titanium-based hydride hydrogen storage reactor and numerical simulation of the hydrogen absorption and desorption process [J]. Energy Storage Science and Technology, 2025, 14(10): 3955-3967. |
| [13] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
| [14] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
| [15] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||