Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 3037-3050.doi: 10.19799/j.cnki.2095-4239.2025.0552
• Special Issue on Short Term High-Frequency High-Power Energy Storage • Previous Articles
Chengshan XU1,2(), Ye SUN3, Zhikai YANG4, Mingqiang ZHAO5,6, Yalun LI7, Xuning FENG1,2, Hewu WANG1,2, Languang LU1,2(
), Minggao OUYANG1,2
Received:
2025-06-11
Revised:
2025-07-01
Online:
2025-08-28
Published:
2025-08-18
Contact:
Languang LU
E-mail:xcs_pcg@mail.tsinghua.edu.cn;lulg@tsinghua.edu.cn
CLC Number:
Chengshan XU, Ye SUN, Zhikai YANG, Mingqiang ZHAO, Yalun LI, Xuning FENG, Hewu WANG, Languang LU, Minggao OUYANG. Research progress on arc induced by thermal runaway in lithium-ion battery systems for energy storage[J]. Energy Storage Science and Technology, 2025, 14(8): 3037-3050.
Fig. 5
(a) Critical voltage diagram of inter-electrode distance and particle size[19], (b) a parameter evaluation and design method to prevent particulate matter from inducing arcs[19], (c) schematic diagrams of three different arc modes[20], (d) boundary relationship between arc critical voltage and electrode spacing[20]"
[1] | LI Y L, WEI Y F, ZHU F Q, et al. The path enabling storage of renewable energy toward carbon neutralization in China[J]. eTransportation, 2023, 16: 100226. DOI: 10.1016/j.etran. 2023. 100226. |
[2] | 袁帅, 崔煜杰, 程东浩, 等. 2017—2024年全球电化学储能电站火灾爆炸事故统计分析[J]. 储能科学与技术, 2025, 14(6): 2362-2376. DOI: 10.19799/j.cnki.2095-4239.2024.1151. |
YUAN S, CUI Y J, CHENG D H, et al. Statistical analysis of fire and explosion accidents in electrochemical energy-storage stations from 2017 to 2024 throughout the world[J]. Energy Storage Science and Technology, 2025, 14(6): 2362-2376. DOI: 10.19799/j.cnki.2095-4239.2024.1151. | |
[3] | 张少刚, 张润箫, 聂细亮, 等. 储能电站预制舱磷酸铁锂电池热失控燃爆危害仿真研究[J/OL]. 储能科学与技术, 2025: 1-13. (2025-05-18). https://link.cnki.net/doi/10.19799/j.cnki.2095-4239.2025.0340. |
ZHANG S G, ZHANG R X, NIE X L, et al. Simulation study on thermal runaway explosion hazard of lithium iron phosphate battery in prefabricated cabin of energy storage power station[J/OL]. Energy Storage Science and Technology, 2025: 1-13. (2025-05-18). https://link.cnki.net/doi/10.19799/j.cnki.2095-4239. 2025. 0340. | |
[4] | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10. 1016/j.joule.2020.02.010. |
[5] | WANG S P, SONG L F, LI C H, et al. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery[J]. Journal of Energy Storage, 2023, 74: 109368. DOI: 10.1016/j.est.2023.109368. |
[6] | XU C S, FAN Z W, ZHANG M Q, et al. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods[J]. Cell Reports Physical Science, 2023, 4(12): 101705. DOI: 10.1016/j.xcrp.2023.101705. |
[7] | WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. DOI: 10.1016/j.etran.2022.100190. |
[8] | WANG Q Z, WANG H B, XU C S, et al. Multidimensional fire propagation of lithium-ion phosphate batteries for energy storage[J]. eTransportation, 2024, 20: 100328. DOI: 10.1016/j.etran. 2024. 100328. |
[9] | XU W Q, WU X G, LI Y L, et al. A comprehensive review of DC arc faults and their mechanisms, detection, early warning strategies, and protection in battery systems[J]. Renewable and Sustainable Energy Reviews, 2023, 186: 113674. DOI: 10.1016/j.rser.2023.113674. |
[10] | 黄怀宇, 黄思林, 赵荣超, 等. 磷酸铁锂电池铝塑膜壳体绝缘失效触发热失控特性实验研究[J]. 储能科学与技术, 2025, 14(2): 613-623. DOI: 10.19799/j.cnki.2095-4239.2024.0869. |
HUANG H Y, HUANG S L, ZHAO R C, et al. Experimental study on thermal runaway characteristics triggered by insulation failure of aluminum-plastic film shell of lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2025, 14(2): 613-623. DOI: 10.19799/j.cnki.2095-4239.2024.0869. | |
[11] | 牛腾腾, 黄人杰, 渠展展, 等. 1500 V锂离子电池簇电场分布仿真及绝缘风险分析[J]. 中国电机工程学报, 2024, 44(1): 377-385. DOI: 10.13334/j.0258-8013.pcsee.222335. |
NIU T T, HUANG R J, QU Z Z, et al. Electric field distribution simulation and insulation risk analysis of 1 500 V lithium-ion battery cluster[J]. Proceedings of the CSEE, 2024, 44(1): 377-385. DOI: 10.13334/j.0258-8013.pcsee.222335. | |
[12] | CHEN H, LIU Y W, QU Z Z, et al. Experimental research on thermal runaway characterization and mechanism induced by the shell insulation failure for LiFePO4 Lithium-ion battery[J]. Journal of Energy Storage, 2024, 84: 110735. DOI: 10.1016/j.est. 2024. 110735. |
[13] | LI W F, XUE Y, FENG X B, et al. Enhancing understanding of particle emissions from lithium-ion traction batteries during thermal runaway: An overview and challenges[J]. eTransportation, 2024, 22: 100354. DOI: 10.1016/j.etran. 2024. 100354. |
[14] | WANG H B, WANG Q Z, JIN C Y, et al. Detailed characterization of particle emissions due to thermal failure of batteries with different cathodes[J]. Journal of Hazardous Materials, 2023, 458: 131646. DOI: 10.1016/j.jhazmat.2023.131646. |
[15] | ZHANG Y J, WANG H W, LI W F, et al. Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries[J]. Journal of Energy Storage, 2019, 26: 100991. DOI: 10.1016/j.est.2019.100991. |
[16] | ESSL C, GOLUBKOV A W, GASSER E, et al. Comprehensive hazard analysis of failing automotive lithium-ion batteries in overtemperature experiments[J]. Batteries, 2020, 6(2): 30. DOI: 10.3390/batteries6020030. |
[17] | WANG Y, WANG H W, ZHANG Y J, et al. Thermal oxidation characteristics for smoke particles from an abused prismatic Li(Ni0.6Co0.2Mn0.2)O2 battery[J]. Journal of Energy Storage, 2021, 39: 102639. DOI: 10.1016/j.est.2021.102639. |
[18] | WANG G Q, KONG D P, PING P, et al. Revealing particle venting of lithium-ion batteries during thermal runaway: A multi-scale model toward multiphase process[J]. eTransportation, 2023, 16: 100237. DOI: 10.1016/j.etran.2023.100237. |
[19] | LI C, WANG H W, LI Y L, et al. Venting particle-induced arc of lithium-ion batteries during the thermal runaway[J]. eTransportation, 2024, 22: 100350. DOI: 10.1016/j.etran. 2024. 100350. |
[20] | ZHANG Y, PING P, REN X T, et al. Characteristics and generation mechanism of ejecta-induced arc for lithium-ion battery during thermal runaway[J]. eTransportation, 2025, 24: 100429. DOI: 10.1016/j.etran.2025.100429. |
[21] | SHEN H J, WANG H W, LI M H, et al. Thermal runaway characteristics and gas composition analysis of lithium-ion batteries with different LFP and NCM cathode materials under inert atmosphere[J]. Electronics, 2023, 12(7): 1603. DOI: 10. 3390/electronics12071603. |
[22] | WASSILIADIS N, STEINSTRÄTER M, SCHREIBER M, et al. Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID.3[J]. eTransportation, 2022, 12: 100167. DOI: 10.1016/j.etran.2022.100167. |
[23] | AHN J B, LEE J H, RYOO H J, et al. PCA-based arc detection algorithm for DC series arc detection in PV system[C]//2021 24th International Conference on Electrical Machines and Systems (ICEMS). October 31-November 3, 2021, Gyeongju, Korea, Republic of. IEEE, 2021: 258-261. |
[24] | XU W Q, ZHOU K, LI Y L, et al. Study on the evolution laws and induced failure of series arcs in cylindrical lithium-ion batteries[J]. Applied Energy, 2025, 377: 124562. DOI: 10.1016/j.apenergy. 2024.124562. |
[25] | XU W Q, ZHOU K, WANG H W, et al. Experimental and modeling study of arc fault induced thermal runaway in prismatic lithium-ion batteries[J]. Batteries, 2024, 10(8): 269. DOI: 10.3390/batteries-10080269. |
[26] | PEIYAN Q I, JIE Z M, JIANG D, et al. Combustion characteristics of lithium-iron-phosphate batteries with different combustion states[J]. eTransportation, 2022, 11: 100148. DOI: 10.1016/j.etran. 2021.100148. |
[27] | MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. DOI: 10.1016/j.rser.2021.110717. |
[28] | GONG Z H, SUN J L, WANG H B, et al. Influence of different causes on thermal runaway characteristic of LiFePO4 battery[J]. Journal of Energy Storage, 2024, 93: 112411. DOI: 10.1016/j.est. 2024.112411. |
[29] | XU W Q, ZHOU K, WANG H W, et al. Series arc-induced internal short circuit leading to thermal runaway in lithium-ion battery[J]. Energy, 2024, 308: 132999. DOI: 10.1016/j.energy.2024.132999. |
[30] | XU W Q, LU L G, ZHOU K, et al. Experimental and model analysis of the thermoelectric characteristics of serial arc in prismatic lithium-ion batteries[J]. IET Energy Systems Integration, 2024, 6(S1): 754-764. DOI: 10.1049/esi2.12162. |
[31] | 和志文. 电击穿电弧形成过程及模型研究[D]. 温州: 温州大学, 2021. DOI: 10.27781/d.cnki.gwzdx.2021.000195. |
HE Z W. Study on the forming process and model of electric breakdown arc[D]. Wenzhou: Wenzhou University, 2021. DOI: 10.27781/d.cnki.gwzdx.2021.000195. | |
[32] | RAGALLER K, EGLI W, BRAND K P. Dielectric recovery of an axially blown SF6-Arc after current zero: Part II-theoretical investigations[J]. IEEE Transactions on Plasma Science, 1982, 10(3): 154-162. DOI: 10.1109/TPS.1982.4316162. |
[33] | NIEMEYER L. Evaporation dominated high current arcs in narrow channels[J]. IEEE Transactions on Power Apparatus and Systems, 1978, PAS-97(3): 950-958. DOI: 10.1109/TPAS. 1978. 354568. |
[34] | BEILIS I I, KEIDAR M, BOXMAN R L, et al. Theoretical study of plasma expansion in a magnetic field in a disk anode vacuum arc[J]. Journal of Applied Physics, 1998, 83(2): 709-717. DOI: 10. 1063/1.366742. |
[35] | MERCK W F H, ZATELEPIN V N. The gas dynamics of current-limiting devices during immobility time[J]. IEEE Transactions on Plasma Science, 1997, 25(5): 947-953. DOI: 10.1109/27.649602. |
[36] | ENAMI Y, SAKATA M. Simulation of arc in molded-case circuit breaker with metal vapor and moving electrode[C]//2013 2nd International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). October 20-23, 2013, Matsue, Japan. IEEE, 2013: 1-4. DOI: 10.1109/ICEPE-ST.2013.6804390. |
[37] | DONG C Y, GAO B, LI Y L, et al. Experimental and model analysis of the thermal and electrical phenomenon of arc faults on the electrode pole of lithium-ion batteries[J]. Batteries, 2024, 10(4): 127. DOI: 10.3390/batteries10040127. |
[1] | Bowen LI, Xiankui WEN, Qiang FAN, Tingyun GU, Zhengjun SHI, Xiaoyin ZHANG. Experimental study on heat dissipation through circulation in the hollow shaft of MW-class flywheel motor rotor [J]. Energy Storage Science and Technology, 2025, 14(8): 2925-2931. |
[2] | Pengju LI, Xiaoyu CHEN, Jia XIE, Jiani SHEN, Yijun HE. Research progress on state of power prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3028-3036. |
[3] | Xinkai SU, Lulu ZHAO, Yanqiao CHEN, Chu WANG, Huanjun CHEN, Yi JIN. Review of the research on industrialization and applications of supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(8): 2994-3003. |
[4] | Liyue HU, Wei HUANG, Yun ZHOU, Yingqiang ZHOU, Changzheng SHAO, Ke WANG. Fuzzy reasoning-based evaluation of the thermal diffusion probability of lithium-ion battery modules for energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(7): 2662-2674. |
[5] | Yuan LI, Mingzhi ZHAO, Yujie XU, Jie CAI. Variable-operating-condition operational characteristics of liquid carbon dioxide energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(7): 2761-2771. |
[6] | Feng XIONG, Depeng KONG, Ping PING, Yue ZHANG, Xiantong REN, Yao LV. Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2752-2760. |
[7] | Wenyuan WENG, Bin SHEN, Jiangong ZHU, Yang WANG, Huapeng LU, Wuliyasu HE, Haonan LIU, Haifeng DAI, Xuezhe WEI. Detecting hazardous lithium plating on anodes of lithium-ion batteries—A review of in situ methods [J]. Energy Storage Science and Technology, 2025, 14(7): 2575-2589. |
[8] | Zijing ZHANG, Beibei YUAN, Hong LI, Ying GAO. Thermal runaway gas detection and early warning of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2820-2832. |
[9] | Xiaohui ZHANG, Ruigeng YANG, Songkun JIAO. Research on capacity planning and demand forecasting for energy storage systems based on machine learning [J]. Energy Storage Science and Technology, 2025, 14(7): 2881-2883. |
[10] | Jiahui LIU, Weixiang BIAN, Dawei LI. In situ measurement and analysis of the electromechanical coupling performance of composite graphite electrodes in lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2240-2247. |
[11] | Chunling WU, Liding WANG, Yong LU, Limin GENG, Hao CHEN, Jinhao MENG. Lithium-ion batteries SOH estimation based on gaussian processed regression optimized by egret swarm optimization [J]. Energy Storage Science and Technology, 2025, 14(6): 2498-2511. |
[12] | Yinchi SHAO, Yu GONG, Meng NIU, Ruohuan YANG, Yating LIU, Ran DING. Grid-forming energy storage system taking phase angle and amplitude jumps into account short-circuit current characteristics and its calculation model [J]. Energy Storage Science and Technology, 2025, 14(6): 2451-2461. |
[13] | Gongrui WANG, Anping ZHANG, Xuanxuan REN, Mingzhe YANG, Yuning HAN, Zhongshuai WU. High-voltage lithium cobalt oxide cathode: Key challenges, modification strategies and future prospectives [J]. Energy Storage Science and Technology, 2025, 14(6): 2278-2319. |
[14] | Xun CHEN. Energy management and optimal scheduling strategies for energy storage systems based on deep reinforcement learning [J]. Energy Storage Science and Technology, 2025, 14(6): 2439-2441. |
[15] | Junyang XIAO, Jinge LUO, Weizhe MA, Wuping CHENG, Tong ZENG. Energy storage optimization control strategy in distribution system based on improved artificial bee colony algorithm [J]. Energy Storage Science and Technology, 2025, 14(6): 2567-2574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||