Energy Storage Science and Technology
Chunling WU1,2(), Liding WANG1,2, Yong Lu1,2, Yao MA1,2, Hao Chen1,2, Jinhao Meng3
Received:
2025-01-06
Revised:
2025-02-17
Online:
2025-02-25
CLC Number:
Chunling WU, Liding WANG, Yong Lu, Yao MA, Hao Chen, Jinhao Meng. Lithium-ion batteries SOH estimation based on gaussian processed regression optimized by egret swarm optimization[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0021.
Tab.2
The Pearson coefficient between HFs and Capacity"
电池编号 | 特征参数 | |||
---|---|---|---|---|
HF1 (DCEVI) | HF2 (DCECI) | HF3 (Voltage Max) | HF4 (Voltage Drop) | |
NCA1 | 0.9982 | 0.9985 | 0.9680 | 0.9834 |
NCA2 | 0.9987 | 0.9996 | 0.9803 | 0.9904 |
NCA3 | 0.9968 | 0.9973 | 0.9862 | 0.9880 |
NCA4 | 0.9959 | 0.9990 | 0.9804 | 0.9909 |
NCM1 | 0.9956 | 0.9998 | 0.9932 | 0.9942 |
NCM2 | 0.9962 | 0.9982 | 0.9978 | 0.9978 |
NCM3 | 0.9928 | 0.9980 | 0.9934 | 0.9936 |
NCM4 | 0.9951 | 0.9991 | 0.9942 | 0.9941 |
Tab.3
Computation Time of Each Model in the NCA Dataset"
电池 编号 | 计算耗时/s | |||||||
---|---|---|---|---|---|---|---|---|
GRU | LSTM | BP | PSO-BP | ESOA-BP | GPR | PSO-GPR | ESOA-GPR | |
NCA1 | 0.00999 | 0.01157 | 0.17290 | 0.00984 | 0.00994 | 0.01642 | 0.01437 | 0.01621 |
NCA2 | 0.01382 | 0.01072 | 0.10458 | 0.00705 | 0.00818 | 0.01977 | 0.01682 | 0.01388 |
NCA3 | 0.01272 | 0.01246 | 0.01999 | 0.00950 | 0.00726 | 0.00625 | 0.00639 | 0.00651 |
NCA4 | 0.01597 | 0.01735 | 0.01006 | 0.00804 | 0.009289 | 0.01873 | 0.02061 | 0.01897 |
Tab.4
Computation Time of Each Model in the NCM Dataset"
电池 编号 | 计算耗时/s | |||||||
---|---|---|---|---|---|---|---|---|
GRU | LSTM | BP | PSO-BP | ESOA-BP | GPR | PSO-GPR | ESOA-GPR | |
NCM1 | 0.01371 | 0.01103 | 0.00963 | 0.00920 | 0.00890 | 0.00620 | 0.00810 | 0.00636 |
NCM2 | 0.01471 | 0.01500 | 0.00813 | 0.00684 | 0.00694 | 0.01364 | 0.01161 | 0.02107 |
NCM3 | 0.01046 | 0.01362 | 0.00867 | 0.00761 | 0.00737 | 0.01305 | 0.01221 | 0.01565 |
NCM4 | 0.01847 | 0.01233 | 0.00737 | 000732 | 0.00690 | 0.02433 | 0.02319 | 0.02668 |
1 | 杨夯, 黄小庆, 于慎仟, 等. 电化学储能电站主动安全研究[J]. 电力自动化设备, 2023, 43(08):78-87. |
YANG H, HUANG X, YU S, et al. Research on active safety of electrochemical energy storage station[J].Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2023, 43(8):78-87. | |
2 | ZHENG Y, HU J, CHEN J, et al. State of health estimation for lithium battery random charging process based on CNN-GRU method[J]. Energy Reports, 2023, 9:1-10. |
3 | DINI P, COLICELLI A, SAPONARA S. Review on Modeling and SOC/SOH Estimation of Batteries for Automotive Applications[J]. Batteries-Basel, 2024, 10(1). |
4 | LI X, ZHANG L, LIU Y, et al. A fast classification method of retired electric vehicle battery modules and their energy storage application in photovoltaic generation[J]. International Journal of Energy Research, 2019, 44(3):2337-2344. |
5 | 赵鹤, 韩策, 程小露, 等. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(02):454-461. |
ZHAO He, HAN Ce, CHENG Xiaolu, et al. Research on the capacity fading mechanism of high rate aged lithium-ion batteries with anode prelithiation treatment[J]. Energy Storage Science and Technology, 2021, 10(02):454-461. | |
6 | BASIA A, SIMEU-ABAZI Z, GASCARD E, et al. Review on State of Health estimation methodologies for lithium-ion batteries in the context of circular economy[J]. Cirp Journal of Manufacturing Science and Technology, 2021, 32:517-528. |
7 | CHANG C, WANG Q, JIANG J, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage, 2021, 38:102570. |
8 | STROE D-I, SCHALTZ E. Lithium-ion battery state-of-health estimation using the incremental capacity analysis technique[J]. IEEE Transactions on Industry Applications, 2019, 56(1):678-685. |
9 | CHEN Y, HUANG M. A Method of Battery State of Health Prediction Based on AR-Particle Filter[R]. SAE Technical Paper, 2016. |
10 | FU J, WU C, WANG J, et al. Lithium-ion battery SOH prediction based on VMD-PE and improved DBO optimized temporal convolutional network model[J]. Journal of Energy Storage, 2024, 87:111392. |
11 | FENG X, WENG C, HE X, et al. Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9):8583-8592. |
12 | 巫春玲,吕晶晶,相里康,等.基于变分模态分解和核极限学习机集成模型的电动汽车锂电池健康状态预测[J/OL].电源学报:1-14,2023-09-21. |
Chunling WU, Jingjing LÜ, XIANGLI Kang, et al. Health State Prediction of Electric Vehicle Lithium Battery based on Integrated Model of Variation Modal Decomposition and Kernel Limit Learning Machine [J/OL]. Journal of Power Supply:1-14, 2023-09-21. | |
13 | Chunling Wu, Juncheng Fu, Xinrong Huang, Xianfeng Xu, Jinhao Meng. Lithium-Ion Battery Health State Prediction Based on VMD and DBO-SVR [J]. Energies, 2023, 16(10), 3993. |
14 | RAUF H, KHALID M, ARSHAD N. Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling[J]. Renewable and Sustainable Energy Reviews, 2022, 156:111903. |
15 | 顾菊平, 蒋凌, 张新松, 等. 基于特征提取的锂离子电池健康状态评估及影响因素分析[J]. 电工技术学报, 2023, 38(19):5330-5342. |
GU J, JIANG L, ZHANG X, et al. Estimation and Influencing Factor Analysis of Lithium-Ion Batteries State of Health Based on Features Extraction[J]. Diangong Jishu Xuebao /Transactions of China Electrotechnical Society, 2023, 38(19):5330-5342. | |
16 | ZHU J, WANG Y, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13(1). |
17 | 李放, 闵永军, 王琛, et al. 基于充电过程的锂电池 SOH 估计和 RUL 预测[J]. 储能科学与技术, 2022, 11(10): 3316-3327. |
LI F, MIN Y J, WANG C, et al. State of health estimation and remaining useful life predication of lithium batteries using charging process[J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327. | |
18 | 张朝龙, 陈阳, 刘梦玲, 等.一种基于ICA-T特征和CNN-LA-BiLSTM 的锂离子电池健康状态估计方法[J]. 储能科学与技术. |
ZHANG ChaoLong, CHEN Yang, LIU MengLing, et al. A state of health estimation method for lithium-ion batteries based on ICA-T | |
features and CNN-LA-BiLSTM[J]. Energy Storage Science and Technology. | |
19 | WEN J P, CHEN X, LI X H, et al. SOH prediction of lithium battery based on IC curve feature and BP neural network[J]. Energy, 2022, 261:8. |
20 | ZHAO Y-P, WANG J-J, LI X-Y, et al. Extended least squares support vector machine with applications to fault diagnosis of aircraft engine[J]. ISA Transactions, 2020, 97:189-201. |
21 | REEVES B. Noise Modulated GPR: Second Generation Technology[C]. 15th International Conference on Ground Penetrating Radar (GPR), 2014:708-713. |
22 | 李晓燕,李弢,马尽文.高斯过程混合模型在含噪输入预测策略下的煤矿瓦斯浓度柔性预测[J].信号处理,2021,37(11):2031-2040. |
LI Xiaoyan, LI Tao, MA Jinwen. Gaussian process mixture model for flexible prediction of coal mine gas concentration under noisy input prediction strategy[J]. Signal Processing,2021,37(11):2031-2040. | |
23 | 徐厚宝, 杨承莲, 张永康. 卡尔曼滤波优化的高斯过程回归模型[J]. 北京理工大学学报:1-8,2024-03-29. |
XU Houbao, YANG Chenglian, ZHANG Yongkang. Optimization Model of Gaussian Process Regression Based on Kalman Filtering. Transactions of BeijingInstitute of Technology:1-8,2024-03-29. | |
24 | SHAMI T M, EL-SALEH A A, ALSWAITTI M, et al. Particle Swarm Optimization: A Comprehensive Survey[J]. IEEE Access, 2022, 10:10031-10061. |
25 | LI Chaoran,XIAO Fei,FAN Yaxiang, et al. An Approach to Lithium-ion Battery SOH Estimation Based on Convolutional Neural Network[J] Transactions of China Electrotechnical Society,2020,35(19): 4106-4119. |
26 | Chen Z, Francis A, Li S, et al. Egret swarm optimization algorithm: an evolutionary computation approach for model free optimization[J]. Biomimetics, 2022, 7(4): 144. |
[1] | Jianru ZHANG, Qiyu WANG, Qinghao LI, Xianying ZHANG, Bitong WANG, Xiqian YU, Hong LI. Physical characterization techniques and applications in lithium battery failure analysis [J]. Energy Storage Science and Technology, 2025, 14(1): 286-309. |
[2] | Yuanxiu XING, Zhuanwei LIU, Yufeng XING, Wenbo WANG. BDD-DETR: An efficient algorithm for detecting small surface defects on lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 370-379. |
[3] | Shifeng YE, Chaofeng HONG, Xiao QI, Weixiong WU, Zijian TAN, Qi ZHOU, Zhaoyang ZHANG. Lithium-ion batteries surface temperature prediction toward EEMD-GRU-NN method [J]. Energy Storage Science and Technology, 2025, 14(1): 380-387. |
[4] | Ke LI, Shunbing ZHU, Zhige TAO, He WANG. Fire suppression experiment of lithium iron phosphate battery with composite water extinguishing agent [J]. Energy Storage Science and Technology, 2025, 14(1): 140-151. |
[5] | Wenjing ZHANG, Wei XIAO, Yahui YI, Liqin QIAN. Progress on safety modification strategies for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 104-123. |
[6] | Yong LIU, Huaiwen YU, Dapeng LIU, Yong MU, Yingzhou WANG, Xiuyu ZHANG. Remaining useful life prediction of lithium-ion battery based on an ABC-LSTM model [J]. Energy Storage Science and Technology, 2025, 14(1): 331-345. |
[7] | Zheng CHEN, Yue PENG, Jingyuan HU, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. Lithium battery capacity prediction based on short-term charging data and an enhanced whale optimization algorithm [J]. Energy Storage Science and Technology, 2025, 14(1): 319-330. |
[8] | Yingying LIU, Xiaoyuan ZHANG, Mengnan LIU, junzhang SUN, Yan ZHANG. State of health interval estimation for lithium battery via Gaussian process regression with adaptive optimal combination Kernel function [J]. Energy Storage Science and Technology, 2025, 14(1): 346-357. |
[9] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[10] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[11] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[12] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[13] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[14] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[15] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||