Energy Storage Science and Technology
Previous Articles Next Articles
ZHANG Jiaming1(✉),SHI Boyang1,LIN Weiqi1,XIA Jiahao1,HE Tong1,YI Yong3,LI Yong2(✉),ZHANG Qiaobao1(✉)
Online:2025-12-03
Published:2025-12-03
Contact:
LI Yong,ZHANG Qiaobao
E-mail:ydx1112@126.com, zhangqiaobao@xmu.edu.cn
CLC Number:
ZHANG Jiaming, SHI Boyang, LIN Weiqi, XIA Jiahao, HE Tong, YI Yong, LI Yong, ZHANG Qiaobao. Progress in Electrolyte Design for Ultrahigh Energy Density Lithium Metal Batteries[J]. Energy Storage Science and Technology.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://esst.cip.com.cn/EN/
| [1] Goodenough J B, Park K-S. The Li-Ion Rechargeable Battery: A Perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167–1176. [2] Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180–186. [3] Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries[J]. Chemical Reviews, 2004, 104(10): 4303–4418. [4] Wang H, Yu Z, Kong X, et al. Liquid electrolyte: The nexus of practical lithium metal batteries[J]. Joule, 2022, 6(3): 588–616. [5] Hobold G M, Lopez J, Guo R, et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes[J]. Nature Energy, 2021, 6(10): 951–960. [6] Jie Y, Tang C, Xu Y, et al. Progress and Perspectives on the Development of Pouch-Type Lithium Metal Batteries[J]. Angewandte Chemie International Edition, 2024, 63(7): e202307802. [7] Yao W, Chouchane M, Li W, et al. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating[J]. Energy & Environmental Science, 2023, 16(4): 1620–1630. [8] Nam M G, Jeong S W, Yoo P J. Advancing Post-Secondary Batteries under Lean Electrolyte Conditions through Interfacial Modification Strategies[J]. Advanced Energy Materials, 2025, 15(2): 2400035. [9] Yuan S, Kong T, Zhang Y, et al. Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions[J]. Angewandte Chemie International Edition, 2021, 60(49): 25624–25638. [10] Li A-M, Borodin O, Pollard T P, et al. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries[J]. Nature Chemistry, 2024, 16(6): 922–929. [11] Wan H, Xu J, Wang C. Designing electrolytes and interphases for high-energy lithium batteries[J]. Nature Reviews Chemistry, 2024, 8(1): 30–44. [12] Song Q, Naren T, Wang Z, et al. Double Anion Deep Eutectic Electrolyte with Fluoroacetonitrile Cosolvent for High Performance Lithium Metal Battery[J]. Advanced Functional Materials, 2025, n/a(n/a): e16729. [13] Zhu H-P, Zhang Q-F, Chen Z, et al. Recent progress in ether-based electrolytes for high-voltage lithium metal batteries[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(11): 3452–3470. [14] Yu Y, Ling C, Yang J, et al. Self-Healing fluorinated polymer deep eutectic electrolytes for stable lithium metal batteries[J]. Chemical Engineering Journal, 2024, 498: 155376. [15] Niu C, Lee H, Chen S, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7): 551–559. [16] Deng W, Dai W, Zhou X, et al. Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kg–1 Lithium Metal Battery[J]. ACS Energy Letters, 2021, 6(1): 115–123. [17] Zhang S, Li R, Deng T, et al. Oscillatory solvation chemistry for a 500 Wh kg-1 Li-metal pouch cell[J]. Nature Energy, 2024, 9(10): 1285–1296. [18] Jie Y, Wang S, Weng S, et al. Towards long-life 500 Wh kg-1 lithium metal pouch cells via compact ion-pair aggregate electrolytes[J]. Nature Energy, 2024, 9(8): 987–998. [19] Ji H, Xiang J, Li Y, et al. Liquid–liquid interfacial tension stabilized Li-metal batteries[J]. Nature, 2025, 643(8074): 1255–1262. [20] Li R, Zhang H, Zhang S, et al. Unified affinity paradigm for the rational design of high-efficiency lithium metal electrolytes[J]. Nature Energy, 2025, 10(9): 1155–1165. [21] Huang H, Hu Y, Hou Y, et al. Delocalized electrolyte design enables 600 Wh kg-1 lithium metal pouch cells[J]. Nature, 2025, 644(8077): 660–667. [22] Huang X-Y, Zhao C-Z, Kong W-J, et al. Tailoring polymer electrolyte solvation for 600 Wh kg-1 lithium batteries[J]. Nature, 2025, 646(8084): 343–350. [23] Li T, Zhang X-Q, Shi P, et al. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries[J]. Joule, 2019, 3(11): 2647–2661. [24] Huang Z, Lai J-C, Liao S-L, et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes[J]. Nature Energy, 2023, 8(6): 577–585. [25] Park S, Jin H-J, Yun Y S. Advances in the Design of 3D-Structured Electrode Materials for Lithium-Metal Anodes[J]. Advanced Materials, 2020, 32(51): 2002193. [26] Wan M, Kang S, Wang L, et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode[J]. Nature Communications, 2020, 11(1): 829. [27] Wang L, Wu Z, Zou J, et al. Li-free Cathode Materials for High Energy Density Lithium Batteries[J]. Joule, 2019, 3(9): 2086–2102. [28] Xiong Q, Li D, Li S, et al. A practical 4.8-V Li||LiCoO2 battery[J]. Science Advances, 11(38): eadx5020. [29] Lyu Y, Wu X, Wang K, et al. An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982. [30] Li W, He Z, Jie Y, et al. Understanding and Design of Cathode–Electrolyte Interphase in High-Voltage Lithium–Metal Batteries[J]. Advanced Functional Materials, 2024, 34(45): 2406770. [31] Hao Z, Zhao Q, Tang J, et al. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries[J]. Materials Horizons, 2021, 8(1): 12–32. [32] Tang Z, Li S, Li Y, et al. Lithium metal electrode protected by stiff and tough self-compacting separator[J]. Nano Energy, 2020, 69. [33] Pan R, Xu X, Sun R, et al. Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries[J]. Small, 2018, 14(21): 1704371. [34] Molaiyan P, Abdollahifar M, Boz B, et al. Optimizing Current Collector Interfaces for Efficient "Anode-Free" Lithium Metal Batteries[J]. Advanced Functional Materials, 2024, 34(6): 2311301. [35] Li D, Hu H, Chen B, et al. Advanced Current Collector Materials for High-Performance Lithium Metal Anodes[J]. Small, 2022, 18(24): 2200010. [36] Lu L-L, Ge J, Yang J-N, et al. Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance[J]. Nano Letters, 2016, 16(7): 4431–4437. [37] Guo K, Qi S, Wang H, et al. High-Voltage Electrolyte Chemistry for Lithium Batteries[J]. Small Science, 2022, 2(5): 2100107. [38] Jie Y, Ren X, Cao R, et al. Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries[J]. Advanced Functional Materials, 2020, 30(25): 1910777. [39] Xia L, Miao H, Zhang C, et al. Review—recent advances in non-aqueous liquid electrolytes containing fluorinated compounds for high energy density lithium-ion batteries[J]. Energy Storage Materials, 2021, 38: 542–570. [40] Jiao S, Ren X, Cao R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739–746. [41] Liu H, Holoubek J, Zhou H, et al. Ultrahigh coulombic efficiency electrolyte enables Li||SPAN batteries with superior cycling performance[J]. Materials Today, 2021, 42: 17–28. [42] Ren X, Zou L, Jiao S, et al. High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries[J]. ACS Energy Letters, 2019, 4(4): 896–902. [43] Piao Z, Gao R, Liu Y, et al. A Review on Regulating Li+ Solvation Structures in Carbonate Electrolytes for Lithium Metal Batteries[J]. Advanced Materials, 2023, 35(15): 2206009. [44] He J, Wang H, Zhou Q, et al. Unveiling the Role of Li+ Solvation Structures with Commercial Carbonates in the Formation of Solid Electrolyte Interphase for Lithium Metal Batteries[J]. Small Methods, 2021, 5(8): 2100441. [45] Liu Y, Lin D, Li Y, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J]. Nature Communications, 2018, 9(1): 3656. [46] Cheng H, Sun Q, Li L, et al. Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries[J]. ACS Energy Letters, 2022, 7(1): 490–513. [47] Zhou J, Wang H, Yang Y, et al. Advanced Liquid Electrolyte Design for High-Voltage and High-Safety Lithium Metal Batteries[J]. Advanced Energy Materials, 2025, 15(34): 2502654. [48] Tan S, Ji Y J, Zhang Z R, et al. Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries[J]. ChemPhysChem, 2014, 15(10): 1956–1969. [49] Wang L, Menakath A, Han F, et al. Identifying the components of the solid–electrolyte interphase in Li-ion batteries[J]. Nature Chemistry, 2019, 11(9): 789–796. [50] Park S, Kim S, Lee J-A, et al. Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes[J]. Chemical Science, 2023, 14(37): 9996–10024. [51] Liu X, Shen X, Luo L, et al. Designing Advanced Electrolytes for Lithium Secondary Batteries Based on the Coordination Number Rule[J]. ACS Energy Letters, 2021, 6(12): 4282–4290. [52] Fan X, Chen L, Borodin O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715–722. [53] Fan X, Wang C. High-voltage liquid electrolytes for Li batteries: progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486–10566. [54] Xu K. Electrolytes and Interphases in Li-Ion Batteries and Beyond[J]. Chemical Reviews, 2014, 114(23): 11503–11618. [55] Li M, Wang C, Chen Z, et al. New Concepts in Electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783–6819. [56] Zheng X, Huang L, Ye X, et al. Critical effects of electrolyte recipes for Li and Na metal batteries[J]. Chem, 2021, 7(9): 2312–2346. [57] Qian J, Henderson W A, Xu W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6(1): 6362. [58] Wang H, Yan X, Zhang R, et al. Application-driven design of non-aqueous electrolyte solutions through quantification of interfacial reactions in lithium metal batteries[J]. Nature Nanotechnology, 2025, 20(8): 1034–1042. [59] Chen S, Zheng J, Mei D, et al. High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes[J]. Advanced Materials, 2018, 30(21): 1706102. [60] Chen Y, Yu Z, Rudnicki P, et al. Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery[J]. Journal of the American Chemical Society, 2021, 143(44): 18703–18713. [61] Chen Y, Li M, Liu Y, et al. Origin of dendrite-free lithium deposition in concentrated electrolytes[J]. Nature Communications, 2023, 14(1): 2655. [62] Kim H, Wu F, Lee J T, et al. In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes[J]. Advanced Energy Materials, 2015, 5(6): 1401792. [63] Qian J, Adams B D, Zheng J, et al. Anode-Free Rechargeable Lithium Metal Batteries[J]. Advanced Functional Materials, 2016, 26(39): 7094–7102. [64] Wang J, Yamada Y, Sodeyama K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3(1): 22–29. [65] Zhang X, Zou L, Cui Z, et al. Stabilizing ultrahigh-nickel layered oxide cathodes for high-voltage lithium metal batteries[J]. Materials Today, 2021, 44: 15–24. [66] Jiang Z, Zeng Z, Liang X, et al. Fluorobenzene, A Low-Density, Economical, and Bifunctional Hydrocarbon Cosolvent for Practical Lithium Metal Batteries[J]. Advanced Functional Materials, 2021, 31(1): 2005991. [67] Zhang J, Li Q, Zeng Y, et al. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries[J]. Energy Storage Materials, 2022, 51: 660–670. [68] Park E, Park J, Lee K, et al. Exploiting the Steric Effect and Low Dielectric Constant of 1,2-Dimethoxypropane for 4.3 V Lithium Metal Batteries[J]. ACS Energy Letters, 2023, 8(1): 179–188. [69] Zhang J, Li Q, Zeng Y, et al. Weakly Solvating Cyclic Ether Electrolyte for High-Voltage Lithium Metal Batteries[J]. ACS Energy Letters, 2023, 8(4): 1752–1761. [70] Yao Y-X, Chen X, Yan C, et al. Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly Solvating Electrolyte**[J]. Angewandte Chemie International Edition, 2021, 60(8): 4090–4097. [71] Ma T, Ni Y, Wang Q, et al. Optimize Lithium Deposition at Low Temperature by Weakly Solvating Power Solvent[J]. Angewandte Chemie International Edition, 2022, 61(39): e202207927. [72] Wu L-Q, Li Z, Fan Z-Y, et al. Unveiling the Role of Fluorination in Hexacyclic Coordinated Ether Electrolytes for High-Voltage Lithium Metal Batteries[J]. Journal of the American Chemical Society, 2024, 146(9): 5964–5976. [73] Zheng J, Fan X, Ji G, et al. Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries[J]. Nano Energy, 2018, 50: 431–440. [74] Ren X, Zou L, Cao X, et al. Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions[J]. Joule, 2019, 3(7): 1662–1676. [75] Chen S, Zheng J, Yu L, et al. High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes[J]. Joule, 2018, 2(8): 1548–1558. [76] Yu Z, Wang H, Kong X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nature Energy, 2020, 5(7): 526–533. [77] Yu Z, Rudnicki P E, Zhang Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nature Energy, 2022, 7(1): 94–106. [78] Choi I R, Chen Y, Shah A, et al. Asymmetric ether solvents for high-rate lithium metal batteries[J]. Nature Energy, 2025, 10(3): 365–379. [79] Huang Y, Li R, Weng S, et al. Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries[J]. Energy & Environmental Science, 2022, 15(10): 4349–4361. [80] Cao X, Gao P, Ren X, et al. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries[J]. Proceedings of the National Academy of Sciences, 2021, 118(9): e2020357118. [81] Wu Z, Li R, Zhang S, et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries[J]. Chem, 2023, 9(3): 650–664. [82] Ren X, Chen S, Lee H, et al. Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries[J]. Chem, 2018, 4(8): 1877–1892. [83] Li G-X, Koverga V, Nguyen A, et al. Enhancing lithium-metal battery longevity through minimized coordinating diluent[J]. Nature Energy, 2024, 9(7): 817–827. [84] Lu Y, Cao Q, Zhang W, et al. Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium metal batteries under extreme cycling conditions[J]. Nature Energy, 2025, 10(2): 191–204. [85] Wu J, Wang X, Liu Q, et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries[J]. Nature Communications, 2021, 12(1): 5746. [86] Shi P, Ma J, Liu M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602–610. [87] Wang Z, Xia J, Ji X, et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries[J]. Nature Energy, 2024, 9(3): 251–262. |
| [1] | Lining PAN, Haibin WANG, Xiang FANG, Pinghao SHI, Fei TAN, Junhua ZHAO. The effect of bifunctional electrolyte additive (cyanomethyl p-toluenesulfonate) on the performance of lithium cobalt oxide high-voltage lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3279-3289. |
| [2] | Yan ZHAO, Hao LIU, Zonglin YI, Li LI, Lijing XIE, Fangyuan SU. Interfacial behavior of FEC and VC at graphite anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3249-3258. |
| [3] | Yihua QIAN, Yaohong ZHAO, Qing WANG, Peng GUO, Dating PEI, Yirou ZENG. Research progress and prospect of sodium halide solid-state electrolytes [J]. Energy Storage Science and Technology, 2025, 14(9): 3389-3401. |
| [4] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Qiangfu SUN, Bowen ZHENG, Yuhao GU, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. Reviews of selected 100 recent papers for lithium batteries (June 1, 2025 to July 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(9): 3229-3248. |
| [5] | Chao PANG, Shuang DING, Xiaokun ZHANG, Yong XIANG. Simulation study of the solvation structure and ion migration behavior in localized high-concentration electrolytes [J]. Energy Storage Science and Technology, 2025, 14(8): 3207-3215. |
| [6] | Jingyu XIANG, Wei ZHONG, Shijie CHENG, Jia XIE. Boosting sodium battery energy storage: New research progress of pre-sodiation technology [J]. Energy Storage Science and Technology, 2025, 14(8): 3051-3064. |
| [7] | Xiaohan BAN, Mingxia ZHOU, Hongrui HU, Fuliang LIU, Dongwei MA, Bin SHI, Xiaogang ZHANG. Ultrahigh-power lithium-ion batteries based on nano/micro-structured LiCoO2 graded-particle cathode design [J]. Energy Storage Science and Technology, 2025, 14(8): 2950-2959. |
| [8] | Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2025 to May 31 2025) [J]. Energy Storage Science and Technology, 2025, 14(7): 2884-2902. |
| [9] | Wenjie ZHANG, Dongsheng REN, Yu WU, Xinyu RUI, Xiang LIU, Xuning FENG, Languang LU. Thermal stability of key materials in Li10GeP12S2-based all-solid-state batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2193-2199. |
| [10] | Deshuai LIU, Huiqin ZHU, Ruihao SUN, Meng LI, Wenhao GONG, Xiaohui LI, Weiwei QIAN. Synergistic dual-additive boost cyclability of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1858-1865. |
| [11] | Xiaoru XU, Jianzhen OU, Jiawei LIU, Zhicong CHEN, Hao YE, Yinglong LIU, Yingli LIU, Zeyu LIN, Jingjing LIU, Junhui JIAN, Xu LUO, Jingmin FAN, Chao WANG, Libin LEI, Bo LIANG. Direct ammonia tubular fuel cell with an embedded microchannel ceramic cracking reactor [J]. Energy Storage Science and Technology, 2025, 14(5): 1818-1828. |
| [12] | Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2025 to March 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(5): 1727-1747. |
| [13] | Chenglong JIN, Mengting SUN, Qingfei MENG, Shuwei ZHANG, Zhou ZHOU, Yuyang QI. Design and application of wide-temperature electrolytes for Li/Cr8O21 batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376. |
| [14] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
| [15] | Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2 [J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||