Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 3051-3064.doi: 10.19799/j.cnki.2095-4239.2025.0399
• Special Issue on Short Term High-Frequency High-Power Energy Storage • Previous Articles
Jingyu XIANG1,2(), Wei ZHONG1,3, Shijie CHENG1, Jia XIE1(
)
Received:
2025-04-23
Revised:
2025-05-06
Online:
2025-08-28
Published:
2025-08-18
Contact:
Jia XIE
E-mail:xiangjingyu@hust.edu.cn;xiejia@hust.edu.cn
CLC Number:
Jingyu XIANG, Wei ZHONG, Shijie CHENG, Jia XIE. Boosting sodium battery energy storage: New research progress of pre-sodiation technology[J]. Energy Storage Science and Technology, 2025, 14(8): 3051-3064.
Fig. 3
Sodium enrichment technology of the cathode: (a) Influence of Na content on the structure of P2-type materials[42]; (b) Schematic diagram of injecting Na+ into P2-type materials by electrochemical method[43]; (c) Schematic diagram of P2-type materials coated with NaPO3[44]; (d) Schematic diagram of m-BQ insertion into vanadium oxide[45]"
Fig. 4
Sodium foil solid-state reduction-type material: (a) Schematic diagram of direct contact pre-sodiation with sodium foil[46]; (b) The role of electrolyte in pre-sodiation and its influence on SEI[47]; (c) Schematic diagram of vacuum deposition of sodium foil[48]; (d) Synthesis of IBL and the pre-sodiation process combined with mechanical rolling[49]"
Fig. 6
Liquid reduction-type material: (a) Schematic diagram of HC pre-sodiation with Na-Biph/DME[34]; (b) Performance of HC before and after pre-sodiation[56]; (c) Images of NFAM and HC electrode sheets treated with different reagents[57]; (d) Schematic diagram of HC pre-sodiation with Na-Biph/TEGDME[58]; (e) Comparison of HOMO levels and redox potentials for various aromatic compounds[59]; (f) Schematic diagram of HC pre-sodiation process with Na-DK[60]"
Fig. 7
Solid-state oxidation-type material: (a) Schematic diagram of phase transition of NaCrO2 during battery charging anddischarging[61]; (b) Schematic diagram of Na2S pre-sodiation[62]; (c) Decomposition potential of Na2C2O4 under differentconductive agents[65]; (d) Decomposition and residue of DTPA-5Na during charging and discharging[63]; (e) Schematic diagram of Ni-Na2O synthesis[71]"
[1] | KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54(11): 3431-3448. DOI: 10.1002/anie.201410376. |
[2] | KALAMARAS E, MAROTO-VALER M M, SHAO M H, et al. Solar carbon fuel via photoelectrochemistry[J]. Catalysis Today, 2018, 317: 56-75. DOI: 10.1016/j.cattod.2018.02.045. |
[3] | BIN D, WANG F, TAMIRAT A G, et al. Progress in aqueous rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(17): 1703008. DOI: 10.1002/aenm.201703008. |
[4] | NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. DOI: 10.1002/anie.201703772. |
[5] | ZHENG W, LIANG G M, LIU Q, et al. The promise of high-entropy materials for high-performance rechargeable Li-ion and Na-ion batteries[J]. Joule, 2023, 7(12): 2732-2748. DOI: 10.1016/j.joule.2023.10.016. |
[6] | ELLIS B L, NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-177. DOI: 10.1016/j.cossms.2012. 04.002. |
[7] | CHAYAMBUKA K, MULDER G, DANILOV D L, et al. Sodium-ion battery materials and electrochemical properties reviewed[J]. Advanced Energy Materials, 2018, 8(16): 1800079. DOI: 10.1002/aenm.201800079. |
[8] | SONG J H, XIAO B W, LIN Y H, et al. Interphases in sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(17): 1703082. DOI: 10.1002/aenm.201703082. |
[9] | EFTEKHARI A, KIM D W. Sodium-ion batteries: New opportunities beyond energy storage by lithium[J]. Journal of Power Sources, 2018, 395: 336-348. DOI: 10.1016/j.jpowsour. 2018.05.089. |
[10] | XU H, LI H J, WANG X M. The anode materials for lithium-ion and sodium-ion batteries based on conversion reactions: A review[J]. ChemElectroChem, 2023, 10(9): e202201151. DOI: 10.1002/celc.202201151. |
[11] | MASQUELIER C, CROGUENNEC L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J]. Chemical Reviews, 2013, 113(8): 6552-6591. DOI: 10.1021/cr3001862. |
[12] | QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. DOI: 10.1002/aenm.201700403. |
[13] | LI Y, LIU G L, CHE J X, et al. Review on layered oxide cathodes for sodium-ion batteries: Degradation mechanisms, modification strategies, and applications[J]. Interdisciplinary Materials, 2025, 4(1): 24-51. DOI: 10.1002/idm2.12213. |
[14] | CHEN M Z, LIU Q N, WANG S W, et al. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies[J]. Advanced Energy Materials, 2019, 9(14): 1803609. DOI: 10.1002/aenm.201803609. |
[15] | CHENG L P, LUO G G, ZHAO Q Q, et al. Synthesis, structures and luminescence of silver (I) thiolate nanoclusters based on anion templates[J]. Scientia Sinica Chimica, 2017, 47(6): 695-704. DOI: 10.1360/n032016-00238. |
[16] | QIAO S Y, ZHOU Q W, MA M, et al. Advanced anode materials for rechargeable sodium-ion batteries[J]. ACS Nano, 2023, 17(12): 11220-11252. DOI: 10.1021/acsnano.3c02892. |
[17] | QIAN J F, WU C, CAO Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials, 2018, 8(17): 1702619. DOI: 10.1002/aenm. 201702619. |
[18] | LIANG J M, ZHANG L J, XILI D G, et al. Research progress on tin-based anode materials for sodium ion batteries[J]. Rare Metals, 2020, 39(9): 1005-1018. DOI: 10.1007/s12598-020-01453-x. |
[19] | SUN L Y, ZENG J, WAN X H, et al. Recent progress of interface modification of layered oxide cathode material for sodium-ion batteries[J]. Electron, 2024, 2(2): e31. DOI: 10.1002/elt2.31. |
[20] | ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161. DOI: 10.1002/aenm. 201900161. |
[21] | SONG M H, HU Z W, YUAN C H, et al. Locally curved surface with CoN4 sites enables hard carbon with superior sodium-ion storage performances at -40 ℃[J]. Advanced Energy Materials, 2024, 14(23): 2304537. DOI: 10.1002/aenm.202304537. |
[22] | CHEN J W, ADIT G, LI L, et al. Optimization strategies toward functional sodium-ion batteries[J]. Energy & Environmental Materials, 2023, 6(4): e12633. DOI: 10.1002/eem2.12633. |
[23] | CUI J, YAO S S, KIM J K. Recent progress in rational design of anode materials for high-performance Na-ion batteries[J]. Energy Storage Materials, 2017, 7: 64-114. DOI: 10.1016/j.ensm. 2016. 12.005. |
[24] | GABRIEL E, MA C R, GRAFF K, et al. Heterostructure engineering in electrode materials for sodium-ion batteries: Recent progress and perspectives[J]. eScience, 2023, 3(5): 100139. DOI: 10.1016/j.esci.2023.100139. |
[25] | QIAN J F, XIONG Y, CAO Y L, et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries[J]. Nano Letters, 2014, 14(4): 1865-1869. DOI: 10.1021/nl404637q. |
[26] | QIAN J F, CHEN Y, WU L, et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries[J]. Chemical Communications, 2012, 48(56): 7070-7072. DOI: 10.1039/C2CC32730A. |
[27] | BODENES L, DARWICHE A, MONCONDUIT L, et al. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries[J]. Journal of Power Sources, 2015, 273: 14-24. DOI: 10.1016/j.jpowsour.2014.09.037. |
[28] | WINKLER V, KILIBARDA G, SCHLABACH S, et al. Surface analytical study regarding the solid electrolyte interphase composition of nanoparticulate SnO2 anodes for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2016, 120(43): 24706-24714. DOI: 10.1021/acs.jpcc.6b06662. |
[29] | PAN Y, ZHANG Y Z, PARIMALAM B S, et al. Investigation of the solid electrolyte interphase on hard carbon electrode for sodium ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 799: 181-186. DOI: 10.1016/j.jelechem.2017.06.002. |
[30] | RAJAGOPALAN R, TANG Y G, JIA C K, et al. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: Issues and solutions[J]. Energy & Environmental Science, 2020, 13(6): 1568-1592. DOI: 10.1039/C9EE03637G. |
[31] | BOMMIER C, JI X L. Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes[J]. Small, 2018, 14(16): 1703576. DOI: 10.1002/smll.201703576. |
[32] | ZHANG M H, LI Y, WU F, et al. Boost sodium-ion batteries to commercialization: Strategies to enhance initial coulombic efficiency of hard carbon anode[J]. Nano Energy, 2021, 82: 105738. DOI: 10.1016/j.nanoen.2020.105738. |
[33] | YUAN Y T, JAN S, WANG Z Y, et al. A simple synthesis of nanoporous Sb/C with high Sb content and dispersity as an advanced anode for sodium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(14): 5555-5559. DOI: 10.1039/C8TA00592C. |
[34] | LIU M C, ZHANG J Y, GUO S H, et al. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17620-17627. DOI: 10.1021/acsami. 0c02230. |
[35] | PATRA J, HUANG H T, XUE W J, et al. Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon[J]. Energy Storage Materials, 2019, 16: 146-154. DOI: 10.1016/j.ensm.2018.04.022. |
[36] | HE H N, SUN D, TANG Y G, et al. Understanding and improving the initial coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J]. Energy Storage Materials, 2019, 23: 233-251. DOI: 10.1016/j.ensm.2019.05.008. |
[37] | PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901. DOI: 10.1039/C2EE02781J. |
[38] | KUBOTA K, KOMABA S. Review—Practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2538-A2550. DOI: 10.1149/2.0151514jes. |
[39] | DENG J Q, LUO W B, CHOU S L, et al. Sodium-ion batteries: From academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): 1701428. DOI: 10.1002/aenm.201701428. |
[40] | GLUSHENKOV A M. Recent commentaries on the expected performance, advantages and applications of sodium-ion batteries[J]. Energy Materials, 2023: DOI: 10.20517/energymater. 2022.70 |
[41] | JIN T, WANG P F, WANG Q C, et al. Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(34): 14511-14516. DOI: 10.1002/anie.202003972. |
[42] | ZHAO C L, YAO Z P, WANG Q D, et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes[J]. Journal of the American Chemical Society, 2020, 142(12): 5742-5750. DOI: 10.1021/jacs.9b13572. |
[43] | FANG K, TANG Y L, LIU J J, et al. Injecting excess Na into a P2-type layered oxide cathode to achieve presodiation in a Na-ion full cell[J]. Nano Letters, 2023, 23(14): 6681-6688. DOI: 10.1021/acs.nanolett.3c01890. |
[44] | JO J H, CHOI J U, KONAROV A, et al. Sodium-ion batteries: Building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate[J]. Advanced Functional Materials, 2018, 28(14): 1705968. DOI: 10.1002/adfm.201705968. |
[45] | TANG R, LI K, LIU C L, et al. Long-lifespan benzoquinone-intercalated vanadium oxide with vacancies and disorders on the (00l) facets for efficient sodium-ion battery: A facile approach to Na+ capture and pre-sodiation[J]. Chemical Engineering Journal, 2023, 453: 139734. DOI: 10.1016/j.cej.2022.139734. |
[46] | ZHANG X, FAN C L, HAN S C. Improving the initial coulombic efficiency of hard carbon-based anode for rechargeable batteries with high energy density[J]. Journal of Materials Science, 2017, 52(17): 10418-10430. DOI: 10.1007/s10853-017-1206-3. |
[47] | MOEEZ I, JUNG H G, LIM H D, et al. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41394-41401. DOI: 10.1021/acsami.9b14381. |
[48] | HOU L Y, LIU T, WANG H L, et al. Boosting the reversible, high-rate Na+ storage capability of the hard carbon anode via the synergistic structural tailoring and controlled presodiation[J]. Small, 2023, 19(21): 2207638. DOI: 10.1002/smll.202207638. |
[49] | WANG Y K, LU J, DAI W Q, et al. On the practicability of the solid-state electrochemical pre-sodiation technique on hard carbon anodes for sodium-ion batteries[J]. Advanced Functional Materials, 2024, 34(40): 2403841. DOI: 10.1002/adfm.202403841. |
[50] | TANG J L, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 396: 476-482. DOI: 10.1016/j.jpowsour.2018. 06.067. |
[51] | XIAO B W, SOTO F A, GU M, et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes[J]. Advanced Energy Materials, 2018, 8(24): 1801441. DOI: 10.1002/aenm.201801441. |
[52] | TENG J H, DAI B H, ZHANG K B, et al. Application of sodium-rich multifunctional hard carbon synthesized via multi-alloy grafting strategy for presodiation in high-performance sodium-ion batteries[J]. Small, 2024, 20(49): 2407225. DOI: 10.1002/smll. 202407225. |
[53] | SHEN Y F, ZHANG J M, PU Y F, et al. Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery[J]. ACS Energy Letters, 2019, 4(7): 1717-1724. DOI: 10.1021/acsenergylett.9b00889. |
[54] | WU C, HU J M, YE L, et al. Direct regeneration of spent Li-ion battery cathodes via chemical relithiation reaction[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16384-16393. DOI: 10.1021/acssuschemeng.1c06278. |
[55] | ZHENG G Y, LIN Q W, MA J B, et al. Ultrafast presodiation of graphene anodes for high-efficiency and high-rate sodium-ion storage[J]. InfoMat, 2021, 3(12): 1445-1454. DOI: 10.1002/inf2. 12242. |
[56] | QIN N N, SUN Y Y, HU C, et al. Boosting high initial coulombic efficiency of hard carbon by in situ electrochemical presodiation[J]. Journal of Energy Chemistry, 2023, 77: 310-316. DOI: 10.1016/j.jechem.2022.10.032. |
[57] | WANG Z, CHEN S M, QIU J M, et al. Full-cell presodiation strategy to enable high-performance Na-ion batteries[J]. Advanced Energy Materials, 2023, 13(45): 2302514. DOI: 10. 1002/aenm. 202302514. |
[58] | MAN Q Y, WEI C L, TIAN K D, et al. Molecular-level design of high flash point solvents enables high-safety and dual-function chemical presodiation of hard carbon and alloy anodes for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2024, 14(24): 2401016. DOI: 10.1002/aenm.202401016. |
[59] | ZHANG S H, WANG J, CHEN K A, et al. Aromatic ketones as mild presodiating reagents toward cathodes for high-performance sodium-ion batteries[J]. Angewandte Chemie International Edition, 2024, 63(10): e202317439. DOI: 10.1002/anie.202317439. |
[60] | FANG H Y, GAO S N, REN M, et al. Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(2): e202214717. DOI: 10.1002/anie.202214717. |
[61] | SHEN B L, ZHAN R M, DAI C L, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells[J]. Journal of Colloid and Interface Science, 2019, 553: 524-529. DOI: 10.1016/j.jcis.2019.06.056. |
[62] | HU L, LI J B, ZHANG Y D, et al. Enhancing the initial coulombic efficiency of sodium-ion batteries via highly active Na2S as presodiation additive[J]. Small, 2023, 19(46): 2304793. DOI: 10.1002/smll.202304793. |
[63] | JO J H, CHOI J U, PARK Y J, et al. A new pre-sodiation additive for sodium-ion batteries[J]. Energy Storage Materials, 2020, 32: 281-289. DOI: 10.1016/j.ensm.2020.07.002. |
[64] | JO C H, CHOI J U, YASHIRO H, et al. Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(8): 3903-3909. DOI: 10.1039/c8ta09833f. |
[65] | NIU Y B, GUO Y J, YIN Y X, et al. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Advanced Materials, 2020, 32(33): 2001419. DOI: 10.1002/adma.2020 01419. |
[66] | ZHONG W, HE R J, PENG L F, et al. Lifecycle synergistic prelithiation strategy of both anode and cathode for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2025, n/a(n/a): 2406007. DOI: 10.1002/aenm.202406007. |
[67] | ZHONG W, LI S W, LIU M C, et al. Hierarchical spherical Mo2C/N-doped graphene catalyst facilitates low-voltage Li2C2O4 prelithiation[J]. Nano Energy, 2023, 115: 108757. DOI: 10.1016/j.nanoen. 2023. 108757. |
[68] | ZHONG W, WU Q, WU Y K, et al. Scalable spray-dried high-capacity MoC1- x/NC-Li2C2O4 prelithiation composite for lithium-ion batteries[J]. Energy Storage Materials, 2024, 68: 103318. DOI: 10.1016/j.ensm.2024.103318. |
[69] | ZHONG W, ZHANG C, LI S W, et al. Mo2C catalyzed low-voltage prelithiation using nano-Li2C2O4 for high-energy lithium-ion batteries[J]. Science China Materials, 2023, 66(3): 903-912. DOI: 10.1007/s40843-022-2235-4. |
[70] | PAN X X, CHOJNACKA A, BÉGUIN F. Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems[J]. Energy Storage Materials, 2021, 40: 22-30. DOI: 10.1016/j.ensm.2021.04.048. |
[71] | CHEN Y L, ZHU Y L, SUN Z F, et al. Achieving high-capacity cathode presodiation agent via triggering anionic oxidation activity in sodium oxide[J]. Advanced Materials, 2024, 36(36): 2407720. DOI: 10.1002/adma.202407720. |
[72] | CHEN S, WU G B, JIANG H B, et al. External Li supply reshapes Li deficiency and lifetime limit of batteries[J]. Nature, 2025, 638(8051): 676-683. DOI: 10.1038/s41586-024-08465-y. |
[73] | SONG Z R, ZOU K Y, XIAO X H, et al. Presodiation strategies for the promotion of sodium-based energy storage systems[J]. Chemistry—A European Journal, 2021, 27(65): 16082-16092. DOI: 10.1002/chem.202102433. |
[74] | ZHANG T Q, WANG R, HE B B, et al. Recent advances on pre-sodiation in sodium-ion capacitors: A mini review[J]. Electrochemistry Communications, 2021, 129: 107090. DOI: 10.1016/j.elecom. 2021.107090. |
[1] | Xiaohan BAN, Mingxia ZHOU, Hongrui HU, Fuliang LIU, Dongwei MA, Bin SHI, Xiaogang ZHANG. Ultrahigh-power lithium-ion batteries based on nano/micro-structured LiCoO2 graded-particle cathode design [J]. Energy Storage Science and Technology, 2025, 14(8): 2950-2959. |
[2] | Wenjie ZHANG, Dongsheng REN, Yu WU, Xinyu RUI, Xiang LIU, Xuning FENG, Languang LU. Thermal stability of key materials in Li10GeP12S2-based all-solid-state batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2193-2199. |
[3] | Yu LI, Dandan LI, Fei XIE, bin TANG, Xiaohui RONG, Qinqin LIANG, Yongsheng HU. Recent progress of cathode presodiation strategies in sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1748-1757. |
[4] | Congqing TANG, Jingsheng CAI. Recent advances in presodiation strategies for sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1884-1899. |
[5] | Zhongxun AN, Pengcheng LIANG, Chongyang YANG. The influence of different pre-sodiation ratios on the performance of AC//HC sodium-ion capacitors [J]. Energy Storage Science and Technology, 2025, 14(4): 1679-1686. |
[6] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[7] | Yangfeng WANG, Jiaao HOU, Zichen ZHU, Cong SUO, Shuandi HOU. Research progress on hard-carbon closed-pore structure of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 555-569. |
[8] | Yonggang CHANG, Jinhao ZHANG, Wei XIE, Xiuchun LI, Yilin WANG, Chengmeng CHEN. Capacity enhancement strategy of hard carbon anode for sodium-ion battery: A review [J]. Energy Storage Science and Technology, 2025, 14(2): 544-554. |
[9] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
[10] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[11] | Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 30-41. |
[12] | Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. |
[13] | Wenhao GONG, Meng LI, Tao ZHANG, Ruotao ZHANG, Yanxia LIU. Development and fabrication of high-energy and long-endurance Li-ion batteries for UAVs [J]. Energy Storage Science and Technology, 2024, 13(8): 2550-2558. |
[14] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[15] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||