Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (1): 31-43.doi: 10.3969/j.issn.2095-4239.2016.01.004
• Research highlight • Previous Articles Next Articles
RUAN Dianbo, ZHENG Chao, CHEN Xuedan, LI Linyan, ZHOU Zhou, ZUO Feilong, HUANG Yi, CUI Chaojie, GU Yingzhan, ZENG Fudi, YUAN Jun, QIAO Zhijun, FU Guansheng
Received:
2015-11-27
Online:
2016-01-01
Published:
2016-01-01
CLC Number:
RUAN Dianbo, ZHENG Chao, CHEN Xuedan, LI Linyan, ZHOU Zhou, ZUO Feilong, HUANG Yi, CUI Chaojie, GU Yingzhan, ZENG Fudi, YUAN Jun, QIAO Zhijun, FU Guansheng. Review of selected 100 recent papers for supercapacitors (Aug. 1, 2015 to Oct. 31, 2015)[J]. Energy Storage Science and Technology, 2016, 5(1): 31-43.
[1] Ling Z,Yu C,Fan X M,et al. Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance[J]. Nanotechnology,2015,26:374003-374013. [2] Qu W H,Xu Y Y,Lu A H,et al. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes[J]. Bioresource Technology,2015,189:285-291. [3] Tan J,Chen H B,Gao Y,et al. Nitrogen-doped porous carbon derived from citric acid and urea with outstanding supercapacitance performance[J]. Electrochimica Acta,2015,178:144-152. [4] Wang D B,Geng Z,Li B,et al. High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons[J]. Electrochimica Acta,2015,173:377-384. [5] Yu D S,Zhai S L,Jiang W C,et al. Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors[J]. Advanced Materials,2015,27:4895-4901. [6] Zhao Q L,Wang X Y,Xia H,et al. Design, preparation and performance of novel three-dimensional hierarchically porous carbon for supercapacitors[J]. Electrochimica Acta,2015,173:566-574. [7] Wang Z Q,Wu Z Q,Benedetto G D,et al. Microwave synthesis of highly oxidized and defective carbon nanotubes for enhancing the performance of supercapacitors[J]. Carbon,2015,91:103-113. [8] Gueon D,Moon J H. Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications:Emulsion-assisted compact packing and capacitance enhancement[J]. ACS Applied Materials & Interfaces,2015,7:20083-20089. [9] Sun Y M,Fang Z,Wang C X,et al. Incorporating nanoporous polyaniline into layer-by-layer ionic liquid-carbon nanotube-graphene paper:Towards freestanding flexible electrodes with improved supercapacitive performance[J]. Nanotechnology,2015,26:374002-374011. [10] Aphale A,Maisuria K,Mahapatra M K,et al. Hybrid electrodes by in-situ integration of graphene and carbon-nanotubes in polypyrrole for supercapacitors[J]. Scientific Reports,2015,5:14445-14452. [11] Wang J,Ding B,Xu Y L,et al. Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances[J]. ACS Applied Materials & Interfaces,2015,7:22284-22291. [12] Chen I W P,Chen Y S,Kao N J,et al. Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor[J]. Carbon,2015,90:16-24. [13] Ghasemi S,Ahmadi F. Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor[J]. Journal of Power Sources,2015,289:129-137. [14] Lin T T,Lai W H,Lu Q F,et al. Porous nitrogen-doped graphene/carbon nanotubes composite with an enhanced supercapacitor performance[J]. Electrochimica Acta,2015,178:517-524. [15] Kim S K,Kim H J,Lee J C,et al. Extremely durable,flexible supercapacitors with greatly improved performance at high temperatures[J]. ACS Nano,2015,9(8):8569-8577. [16] Ramachandran R,Saranya M,Velmurugan V,et al. Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications[J]. Applied Energy,2015,153:22-31. [17] Sankar K V,Selvan R K. Improved electrochemical performances of reduced graphene oxide based supercapacitor using redox additive electrolyte[J]. Carbon,2015,90:260-273. [18] Sudhakar Y N,Smitha V,Poornesh P,et al. Conversion of pencil graphite to graphene/polypyrrole nanofiber composite electrodes and its doping effect on the supercapacitive properties[J]. Polymer Engineering & Science,2015,55(9):2118-2126. [19] Sun X,Cheng P,Wang H,et al. Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance[J]. Carbon,2015,92:1-10. [20] Wang H J,Zhi L,Liu K Q,et al. Thin-sheet carbon nanomesh with an excellent electrocapacitive performance[J]. Advanced Functional Materials,2015,25:5420-5427. [21] Wu X L,Yang D R,Wang C K,et al. Functionalized three-dimensional graphene networks for high performance supercapacitors[J]. Carbon,2015,92:26-30. [22] Xing L B,Hou S F,Zhou J,et al. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption[J]. Journal of Solid State Chemistry,2015,230:224-232. [23] Zuo Z C,Kim T Y,Kholmanov I,et al. Ultra-light hierarchical graphene electrode for binder-free supercapacitors and lithium-Ion battery anodes[J]. Small,2015,11(37):4922-4930. [24] Jiang L L,Sheng L Z,Long C L,et al. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors[J]. Advanced Energy Materials,2015,5:1500771-1500780. [25] Zhao S Q,Liu T M,Hou D W,et al. Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications[J]. Applied Surface Science,2015,356:259-265. [26] Jadhav P R,Suryawanshi M P,Dalavi D S,et al. Design and electro-synthesis of 3-D nanofibers of MnO2 thin films and their application in high performance supercapacitor[J]. Electrochimica Acta,2015,176:523-532. [27] Weber C,Reichenauer G,Pflaum G,et al. Electroless preparation and ASAXS microstructural analysis of pseudocapacitive carbon manganese oxide supercapacitor electrodes[J]. Langmuir,2015,31:782-788. [28] Kim I T,Kouda N B,Yoshimoto N B K,et al. Preparation and electrochemical analysis of electrodeposited MnO2/C composite for advanced capacitor electrode[J]. Journal of Power Sources,2015,298:123-129. [29] Chen D C,Ding D,Li X X,et al. Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando raman spectroscopy[J]. Chem. Mater.,2015,27:6608-6619. [30] Liu J,Zhang Y,Li Y,et al. In situ chemical synthesis of sandwich-structured MnO2/graphene nanoflowers and their supercapacitive behavior[J]. Electrochimica Acta,2015,173:148-155. [31] Fam D W H,Azoubel S,Liu L,et al. Novel felt pseudocapacitor based on carbon nanotube/metal oxides[J]. Journal of Materials Science,2015,50(20):6578-6585. [32] Weng Y T,Pan H A,Lee R C,et al. Spatially confined MnO2 nanostructure enabling consecutive reversible charge transfer from Mn (IV) to Mn (II) in a mixed pseudocapacitor-battery electrode[J]. Advanced Energy Materials,2015,doi:10.1002/aenm.201500772. [33] Shayeh S J,Ehsani A,Ganjali MR,et al. Conductive polymer/reduced graphene oxide/Au nano particles asefficient composite materials in electrochemical supercapacitors[J]. Applied Surface Science,2015,353:594-599. [34] Jadhav P R,Suryawanshi M P, Dalavi D S,et al. Design and electro-synthesis of 3-D nanofibers of MnO2 thin films and their application in high performance supercapacitor[J]. Electrochimica Acta,2015,176:523-532. [35] Wu Q H,Chen M,Chen K Y,et al. Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors[J]. Journal of Materials Science Letters,2015,doi:10.1007/s10853- 015-9480-4. [36] Ferris A,Garbarino S,Guay D,et al. 3D RuO2 microsupercapacitors with remarkable areal energy[J]. Advanced Materials,2015,27:6625-6629. [37] Daubert J S,Lewis N P,Gotsch H N,et al. Effect of meso- and mirco-porosity in carbon electrodes on atomic layer deposition of pseudocapacitive V2O5 for high performance supercapacitors[J]. Chemistry of Materials,2015,27:6524-6534. [38] Yilmaz G,Guo C X,Lu X M. High-performance solid-state supercapacitors based on V2O5/carbon nanotube composites[J]. Chem. Electro. Chem.,2015,doi:10.1002/celc.201500334. [39] Zou Y Q,Kinloch I A,Dryfe R A W. Mesoporous vertical Co3O4 nanosheet arrays on nitrogen-doped graphene foam with enhanced charge-storage performance[J]. ACS Appl. Mater. Interfaces,2015,7:22831-22838. [40] Liang D W,Tian Z F,Liu J,et al. MoS2 nanosheets decorated with ultrafine Co3O4 nanoparticles for high-performance electrochemical capacitors[J]. Electrochimica Acta,2015,182:376-382. [41] Naveen A N,Manimaran P,Selladurai S. Cobalt oxide (Co3O4)/graphene nanosheets (GNS) composite prepared by novel route for supercapacitor application[J]. J. Mater. Sci.:Mater. Electron.,2015,26:8988-9000. [42] Zhou X M,Shen X T,Xia Z M,et al. Hollow fluffy Co3O4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces,2015,7:20322-20331. [43] Zhao C H,Huang B Y,Fu W B,et al. Fabrication of porous nanosheet-based Co3O4 hollow nanocubes for electrochemical capacitors with high rate capability[J]. Electrochimica Acta,2015,178:555-563. [44] Li Z Y,Cai J,Cizek P,et al. A self-supported flexible binder-free pseudosupercapacitor electrode material with high capacitance and cycling stability from hollow,capsular polypyrrole fibers[J]. J. Mater. Chem. A,2015,3:161-162. [45] Ji J Y,Zhang X Y,Liu J Y,et al. Assembly of polypyrrole nanotube@MnO2 composites with animproved electrochemical capacitance[J]. Materials Science and Engineering B,2015,198:51-56. [46] Wang Y Q,Shi Y,Pan L J,et al. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels[J]. Nano Lett.,2015,15:7736-7741. [47] Zhou J Y,Zhao H,Mu X M,et al. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors[J]. Nanoscale,2015,7:14697-14706. [48] Yang C,Zhang L L,Hu N T,et al. Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density[J]. Journal of Power Sources,2016,302:39-45. [49] Radtke M,McMillan D G,Schroter B,et al. The effect of 3-amino benzoic acid linker and the reversal of donor-acceptor pairs on the electrochemical performance and stability of covalently bonded poly (pyrrole) nanotubes[J]. Polymer,2015,77:289-296. [50] Yang X Q,Liu A R,Zhao Y W,et al. Three-dimensional macroporous polypyrrole-derived graphene electrode prepared by the hydrogen bubble dynamic template for supercapacitors and metal-free catalysts[J]. ACS Appl. Mater. Interfaces,2015,7:23731-23740. [51] Li K,Guo D,Chen J,et al. Oil-water interfacial synthesis of grapheme-polyaniline-MnO2 hybrids using binary oxidant for high performance supercapacitor[J]. Synthetic Metals,2015,209:555-560. [52] Sun Y,Fang Z,Wang C,et al. Incorporating nanoporous polyaniline into layer-by-layer ionic liquid-carbon nanotube-graphene paper:Towards freestanding flexible electrodes with improved supercapacitive performance[J]. Nanotechnology,2015,26(37):374002-374010. [53] Zhang J,Shi L,Liu H,et al. Utilizing polyaniline to dominate the crystal phase of Ni(OH)2 and its effect on the electrochemical property of polyaniline/Ni(OH)2 composite[J]. Journal of Alloys and Compounds,2015,651:126-134. [54] Yang X J,Xu K B,Zou R J,et al. A hybrid electrode of Co3O4@PPy core/shell nanosheet arrays for high-performance supercapacitors[J]. Nano-Micro. Lett.,2015,doi:10.1007/s40820-015-0069-x. [55] Liu C,Wang J,Li J,et al. Controllable synthesis of functional hollow carbon nanostructures with dopamine as precursor for supercapacitors[J]. ACS Applied Materials & Interfaces,2015,7(33):18609-18617. [56] Chen K,Huang X,Wan C,et al. Heteroatom-doped mesoporous carbon nanofibers based on highly cross-linked hybrid polymeric nanofibers:Facile synthesis and application in an electrochemical supercapacitor[J]. Materials Chemistry and Physics,2015,164:85-90. [57] Li Y,Zhang S,Song H,et al. New insight into the heteroatom-doped carbon as the electrode material for supercapacitors[J]. Electrochimica Acta,2015,180:879-886. [58] Choi W H,Choi M J,Bang J H. Nitrogen-doped carbon nanocoil array integrated on carbon nanofiber paper for supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2015,7(34):19370-19381. [59] Zhou Y,Xu X,Shan B,et al. Tuning and understanding the supercapacitance of heteroatom-doped graphene[J]. Energy Storage Materials,2015,1:103-111. [60] Zhou J,Lian J,Hou L,et al. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres[J]. Nature Communications,2015,doi:10.1038/ncomms 9503 . [61] Chen J C,Liu Y Q,Li W J,et al. Nitrogen-enriched carbon sheets derived from egg white by using expanded perlite template and its high-performance supercapacitors[J]. Nanotechnology,2015,doi:10.1088/0957-4484/26/34/345401. [62] Li R Z,Wang Y M,Zhou C,et al. Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability[J]. Advanced Functional Materials,2015,25:5384-5394. [63] Yang J,Li G Z,Pan Z H,et al. All-solid-state high-energy asymmetric supercapacitors enabled by three-dimensional mixed-valent MnOx nanospike and graphene electrodes[J]. ACS Applied Materials & Interfaces,2015,7:22172-22180. [64] Yang M H,Lee K G,Lee S J,et al. Three-dimensional expanded graphene-metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces,2015,7:22364-22371. [65] Li L L,Peng S J,Wu H B,et al. A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers[J]. Advanced Energy Materials,2015,5:1500753-1500761. [66] Patil S J,Bulakhe R N,Lokhande C D. Nanoflake-modulated La2Se3 thin films prepared for an asymmetric supercapacitor device[J]. Chem. Plus. Chem.,2015,80:1478-1487. [67] Cao Y,Lin B P,Sun Y,et al. Symmetric/asymmetric supercapacitor based on the perovskite-type lanthanum cobaltate nanofibers with Sr-substitution[J]. Electrochimica Acta,2015,178:398-406. [68] Yin J L,Park J Y. Asymmetric supercapacitors based on the in situ-grown mesoporous nickel oxide and activated carbon[J]. Journal of Solid State Electrochemistry,2015,19:2391-2398. [69] Peng T,Wang H,Yi H,et al. Co(OH)2 nanosheets coupled with CNT arrays grown on Ni mesh for high-rate asymmetric supercapacitors with excellent capacitive behavior[J]. Electrochimica Acta,2015,176:77-85. [70] Wang H,Wang C,Chen Q,et al. Construction of carbon-nickel cobalt sulphide hetero-structured arrays on nickel foam for high performance asymmetric supercapacitors[J]. Electrochimica Acta,2015,174:1104-1112. [71] Ren X,Guo C,Xu L,et al. Facile synthesis of hierarchical mesoporous honeycomb-like NiO for aqueous asymmetric supercapacitors.[J]. ACS Applied Materials & Interfaces,2015,7:19930-19940. [72] Gupta R,Candler J,Palchoudhury S,et al. Flexible and high performance supercapacitors based on NiCo2O4 for wide temperature range applications[J]. Scientific Reports,2015,5:15265-15275. [73] Xiao Y,Su D,Wang X,et al. In situ growth of ultradispersed NiCo2S4 nanoparticles on graphene for asymmetric supercapacitors[J]. Electrochimica Acta,2015,176:44-50. [74] Movil O,Schadeck C,Staser J A. Investigation of double-layer and pseudocapacitance of surface-modified ionic liquid-functionalized graphene oxide[J]. Journal of Electroanalytical Chemistry,2015,755:127-135. [75] Wu S,Hui K S,Hui K N. One-dimensional core-shell architecture composed of silver nanowire@hierarchical nickel-aluminum layered double hydroxide nanosheet as advanced electrode materials for pseudocapacitor[J]. The Journal of Physical Chemistry C,2015,119(41):23358-23365. [76] Xie L,Su F,Xie L,et al. Self-assembled 3D graphene-based aerogel with Co3O4 nanoparticles as high-performance asymmetric supercapacitor electrode[J]. Chem. Sus. Chem.,2015,8:2917-2926. [77] Kumagai S,Ishikawa T,Sawa N. Cycle performance of lithium-ion capacitors using graphite negative electrodes at different pre-lithiation levels[J]. Journal of Energy Storage,2015,2:1-7. [78] Zhang T,Zhang F,Zhang L,et al. High energy density Li-ion capacitor assembled with all graphene-based electrodes[J]. Carbon,2015,92:106-118. [79] Ding J,Wang H,Li Z,et al. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors[J]. Energy & Environmental Science,2015,8:941-955. [80] Lim Y,Park M,Kim K J,et al. Incorporation of conductive polymer into soft carbon electrodes for lithium ion capacitors[J]. Journal of Power Sources,2015,299:49-56. [81] Sun X,Zhang X,Wang K,et al. Temperature effect on electrochemical performances of Li-ion hybrid capacitors[J]. Journal of Solid State Electrochemistry,2015,19(8):2501-2506. [82] Caoa W,Lib Y,Fitchb B,et al. Strategies to optimize performance of lithium-ion supercapacitors:Screening of cathode configuration, anode pre-lithiation loading and separator type[J]. ECS Transcantions,2015,64(18):67-83. [83] Barsukov V,Langouche F,Khomenko V,et al. Modeling of porous graphite electrodes of hybride electrochemical capacitors and lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2015,19(9):2723-2732. [84] Yang C C,Jang J H,Jiang J R. Study of electrochemical performances of lithium titanium oxide-coated LiFePO4/C cathode composite at low and high temperatures[J]. Materials Chemistry and Physics,2015,165:196-206. [85] Wei W,Guo L L,Qiu X Y,et al. Porous micro-spherical LiFePO4/CNT nanocomposite for high-performance Li-ion battery cathode material[J]. RSC Advances,2015,5:37830-37836. [86] Satyavani T,Kiran B R,Kumar V R,et al. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells[J]. Engineering Science and Technology,2015,doi:10.1016/j.jestch.2015.05.011. [87] Yang J,Li G,Pan Z,et al. All-solid-state high-energy asymmetric supercapacitors enabled by three-dimensional mixed-valent MnOx nanospike and graphene electrodes[J]. ACS Applied Materials & Interfaces,2015,7(40):22172-22180. [88] Yang C,Sun M,Wang X,et al. A novel flexible supercapacitor based on cross-linked PVDF-HFP porous organogel electrolyte and carbon nanotube paper@ π-conjugated polymer film electrodes[J]. ACS Sustainable Chemistry & Engineering,2015,3(9):2067-2076. [89] Yang H,Liu Z,Chandran B K,et al. Self-protection of electrochemical storage devices via a thermal reversible sol-gel transition[J]. Advanced Materials,2015,27(37):5593-5598. [90] Yu D,Zhai S,Jiang W,et al. Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors[J]. Advanced Materials,2015,27(33):4895-4901. [91] Suleman M,Kumar Y,Hashmi S A. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes:Effective role of electrolyte anions[J]. Materials Chemistry and Physics,2015,163:161-171. [92] Lalia B S,Alkaabi M,Hashaikeh R. Sulfated cellulose/polyvinyl alcohol composites as proton conducting electrolyte for capacitors[J]. Energy Procedia,2015,75:1869-1874. [93] Azam M A,Jantan N H,Dorah N,et al. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1M LiPF6 electrolyte[J]. Materials Research Bulletin,2015,69:20-23. [94] Wang X,Chandrabose R S,Chun S E,et al. High energy density aqueous electrochemical capacitors with a KI-KOH electrolyte[J]. ACS Applied Materials & Interfaces,2015,7(36):19978-19985. [95] Wang J,Ding B,Xu Y,et al. Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances[J]. ACS Applied Materials & Interfaces,2015,7(40):22284-22291. [96] Wang J,Feng S P,Yang Y,et al. “Thermal charging” phenomenon in electrical double layer capacitors[J]. Nano Letters,2015,15(9):5784-5790. [97] Muroi S,Iida D,Tsuchihawa T,et al. Degradation mechanisms of electric double layer capacitors with activated carbon electrodes on high voltage exposure[J]. Electrochemistry,2015,83(8):609-618. [98] Shi Z,Yu X,Wang J,et al. Excellent low temperature performance electrolyte of spiro-(1,1′)-bipyrrolidinium tetrafluoroborate by tunable mixtures solvents for electric double layer capacitor[J]. Electrochimica Acta,2015,174:215-220. [99] Golodnitsky D,Strauss E,Peled E,et al. Review on order and disorder in polymer electrolytes[J]. Journal of the Electrochemical Society,2015,162(14):A2551-A2566. [100] Syahidah S N,Majid S R. Ionic liquid-based polymer gel electrolytes for symmetrical solid-state electrical double layer capacitor operated at different operating voltages[J]. Electrochimica Acta,2015,doi:10.1016/j.electacta.2015.02.215. |
[1] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[5] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[8] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[9] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[10] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[11] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
[12] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[13] | Ying TAO, Lingfei ZHAO, Yunxiao WANG, Yuliang CAO, Shulei CHOU. Stabilization of sodium metal anodes by dual-salt high concentration electrolyte [J]. Energy Storage Science and Technology, 2022, 11(4): 1103-1109. |
[14] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[15] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||