Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (6): 869-881.doi: 10.12028/j.issn.2095-4239.2016.0085
Previous Articles Next Articles
WU Yida, JIN Zhou, ZHANG Hua, ZHAO Junnian, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin,WANG Hao, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2016-10-17
Revised:
2016-10-20
Online:
2016-11-01
Published:
2016-11-01
WU Yida, JIN Zhou, ZHANG Hua, ZHAO Junnian, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin,WANG Hao, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Aug. 1,2016 to Sep. 30,2016)[J]. Energy Storage Science and Technology, 2016, 5(6): 869-881.
[1] CHEN C J,PANG W K,MORI T,et al. The origin of capacity fade in the Li2MnO3 center dot LiMO2 (M=Li, Ni, Co, Mn) microsphere positive electrode:An operando neutron diffraction and transmission X-ray microscopy study[J]. Journal of the American Chemical Society,2016,138(28):8824-8833. [2] JACKSON D H,LASKAR M R,FANG S Y,et al. Optimizing AlF3 atomic layer deposition using trimethylaluminum and TaF5:Application to high voltage Li-ion battery cathodes[J]. Journal of Vacuum Science & Technology A,2016,34(3):doi: 10.1116/1.4943385. [3] QIU B,ZHANG M H,WU L J,et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nature Communications,2016,7:doi: 10.1038/ncomms12108. [4] YAN P F,ZHENG J M,ZHENG J X,et al. Ni and Co segregations on selective surface facets and rational design of layered lithium transition-metal oxide cathodes[J]. Advanced Energy Materials,2016,6(9):doi: 10.1002/aenm.201670054. [5] ZHAO Y,LIU J T,WANG S B,et al. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides:Implications for enhanced electrochemical performance[J]. Advanced Functional Materials,2016,26(26):4760-4767. [6] DUAN J G,HU G R, [7] LI B,WANG J, [8] ZHOU J G,WANG J,CUTLER J,et al. Imaging the surface morphology, chemistry and conductivity of LiNi1/3Fe1/3Mn4/3O4 crystalline facets using scanning transmission X-ray microscopy[J]. Physical Chemistry Chemical Physics,2016,18(33):22789-22793. [9] GABRIELLI G,AXMANN P,DIEMANT T,et al. Combining optimized particle morphology with a niobium-based coating for long cycling-life, high-voltage lithium-ion batteries[J]. ChemSusChem,2016,9(13):1670-1679. [10] LIU G Q,DU Y L,LIU W B,et al. Study on the action mechanism of doping transitional elements in spinel LiNi0.5Mn1.5O4[J]. Electrochimica Acta,2016,209:308-314. [11] MAO J,MA M Z,LIU P P,et al. The effect of cobalt doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material[J]. Solid State Ionics,2016,292:70-74. [12] PANG W K,LU C Z,LIU C E,et al. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode[J]. Physical Chemistry Chemical Physics,2016,18(26):17183-17189. [13] BOULET-ROBLIN L,BOREL P,SHEPTYAKOV D,et al. Operando neutron powder diffraction using cylindrical cell design:The case of LiNi0.5Mn1.5O4 vs graphite[J]. Journal of Physical Chemistry C,2016,120(31):17268-17273. [14] MANCINI M,AXMANN P,GABRIELLI G,et al. A high-voltage and high-capacity Li1+xNi0.5Mn1.5O4 cathode material:From synthesis to full lithium-ion cells[J]. ChemSusChem,2016,9(14):1843-1849. [15] ABE S,IWASAKI S,SHIMONISHI Y,et al. Effect of Ni and Ti substitutions on Li1.05Mn2O4-delta electrical conductivities at high temperature[J]. Solid State Communications,2016,244:64-67. [16] ZETTSU N,KIDA S,UCHIDA S,et al. Sub-2 nm thick fluoroalkylsilane self-assembled monolayer-coated high voltage spinel crystals as promising cathode materials for lithium ion batteries[J]. Scientific Reports,2016,6:doi: 10.1038/srep31999. [17] SAMARASINGHA P B,SOTTMANN J,MARGADONNA S,et al. In situ synchrotron study of ordered and disordered LiMn1.5Ni0.5O4 as lithium ion battery positive electrode[J]. Acta Materialia,2016,116:290-297. [18] CHEN J,ZHAO N,LI G D,et al. Superior performance of LiFePO4/C with porous structure synthesized by an in situ polymerization restriction method for lithium ion batteries[J]. Materials Chemistry and Physics,2016,180:244-249. [19] KRUMEICH F,WASER O,PRATSINIS S E. Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis[J]. Journal of Solid State Chemistry,2016,242:96-102. [20] PARK K Y,PARK I,KIM H,et al. Lithium-excess olivine electrode for lithium rechargeable batteries[J]. Energy & Environmental Science,2016,9(9):2902-2915. [21] SAULNIER M,AUCLAIR A,LIANG G,et al. Manganese dissolution in lithium-ion positive electrode materials[J]. Solid State Ionics,2016,294:1-5. [22] CHEN R Y,MAAWAD E,KNAPP M,et al. Lithiation-driven structural transition of VO [23] CHEN R Y,REN S H,MU X K,et al. High-performance low-temperature Li+ intercalation in disordered rock-salt Li-Cr-V oxyfluorides[J]. ChemElectroChem,2016,3(6):892-895. [24] AOKI N,OMACHI A,UOSAKI K,et al. Structural study of electrochemically lithiated Si(111) by using soft X-ray emission spectroscopy combined with scanning electron microscopy and through X-ray diffraction measurements[J]. ChemElectroChem,2016,3(6):959-965. [25] KIM S H,YOOK S H,KANNAN A G,et al. Enhancement of the electrochemical performance of silicon anodes through alloying with inert metals and encapsulation by graphene nanosheets[J]. Electrochimica Acta,2016,209:278-284. [26] FAN H Y,LI X Q,HE H Q,et al. Electrochemical properties and thermal stability of silicon monoxide anode for rechargeable lithium-ion batteries[J]. Electrochemistry,2016,84(8):574-577. [27] SEIDLHOFER B K,JERLIU B,TRAPP M,et al. Lithiation of crystalline silicon as analyzed by operando neutron reflectivity[J]. ACS Nano,2016,10(8):7458-7466. [28] CHO I,GONG S,SONG D,et al. Mussel-inspired polydopamine-treated copper foil as a current collector for high-performance silicon anodes[J]. Scientific Reports,2016,6:doi: 10.1038/srep30945. [29] YOO S,KIM J,KANG B. Characterizing local structure of SiOx using confocal m-Raman spectroscopy and its effects on electrochemical property[J]. Electrochimica Acta,2016,212:68-75. [30] BREITUNG B,BAUMANN P,SOMMER H,et al. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries[J]. Nanoscale,2016,8(29):14048-14056. [31] YOON I,ABRAHAM D P,LUCHT B L,et al. In situ measurement of solid electrolyte interphase evolution on silicon anodes using atomic force microscopy[J]. Advanced Energy Materials,2016,6(12):doi: 10.1002/aenm.201600099. [32] JESCHULL F,LINDGREN F,LACEY M J,et al. Influence of inactive electrode components on degradation phenomena in nano-Si electrodes for Li-ion batteries[J]. Journal of Power Sources,2016,325:513-524. [33] JIANG Y Z,WANG H K,LI B B,et al. Interfacial engineering of Si/multi-walled carbon nanotube nanocomposites towards enhanced lithium storage performance[J]. Carbon,2016,107:600-606. [34] DAS S,DUTTA D,ARAUJO R B,et al. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery[J]. Physical Chemistry Chemical Physics,2016,18(32):22323-22330. [35] LIU J Y,CHEN X,KIM J,et al. High volumetric capacity three-dimensionally sphere-caged secondary battery anodes[J]. Nano Letters,2016,16(7):4501-4507. [36] FAROOQ U,DOH C H,PERVEZ S A,et al. Rate-capability response of graphite anode materials in advanced energy storage systems:A structural comparison[J]. Carbon Letters,2016,17(1):39-44. [37] ZHOU X S,YU L,LOU X W. Formation of uniform N-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties[J]. Advanced Energy Materials,2016,6(14):doi: 10.1002/aenm.201600451. [38] PARK S K,KIM H K,ROH K C,et al. The confinement of SnO2 nanocrystals into 3D RGO architectures for improved rate and cyclic performance of LIB anode[J]. Crystengcomm,2016,18(32):6049-6054. [39] LEE H,SONG J,KIM Y J,et al. Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries[J]. Scientific Reports,2016,6:doi: 10.1038/srep30830. [40] YUN Q B,HE Y B,LV W,et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials,2016,28(32):doi: 10.1002/adma.201601409. [41] ZHANG D,ZHOU Y,LIU C H,et al. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery[J]. Nanoscale,2016,8(21):11161-11167. [42] LEE G H,LEE J W,CHOI J I,et al. Ultrafast discharge/charge rate and robust cycle life for high-performance energy storage using ultrafine nanocrystals on the binder-free porous graphene foam[J]. Advanced Functional Materials,2016,26(28):5139-5148. [43] PARK J,JEONG J,LEE Y,et al. Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries[J]. Advanced Materials Interfaces,2016,3(11):doi: 10.1002/admi.201600140. [44] BALABAJEW M,REINHARDT H,BOCK N,et al. In-situ raman study of the intercalation of bis(trifluoromethylsulfonyl) imid ions into graphite inside a dual-ion cell[J]. Electrochimica Acta,2016,211:679-688. [45] RODRIGUES M T,KALAGA K,GULLAPALLI H,et al. Hexagonal boron nitride-based electrolyte composite for Li-ion battery operation from room temperature to [46] LIAO X L,ZHENG X W,CHEN J W,et al. Tris(trimethylsilyl) phosphate as electrolyte additive for self-discharge suppression of layered nickel cobalt manganese oxide[J]. Electrochimica Acta,2016,212:352-359. [47] JUNG R,METZGER M,HAERING D,et al. Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-ion batteries[J]. Journal of the Electrochemical Society,2016,163(8):A1705-A1716. [48] TAKEUCHI S,KOKUMAI R,NAGATA S,et al. Effect of the addition of bivalent ions on electrochemical lithium-ion intercalation at graphite electrodes[J]. Journal of the Electrochemical Society,2016,163(8):A1693-A1696. [49] ELLIS L D,XIA J,LOULI A J,et al. Effect of substituting LiBF4 for LiPF [50] JURNG S,PARK S,YOON T,et al. Low-temperature performance improvement of graphite electrode by allyl sulfide additive and its film-forming mechanism[J]. Journal of the Electrochemical Society,2016,163(8):A1798-A1804. [51] KIM C K,SHIN D S,KIM K E,et al. Fluorinated hyperbranched cyclotriphosphazene simultaneously enhances the safety and electrochemical performance of high-voltage lithium-ion batteries[J]. ChemElectroChem,2016,3(6):913-921. [52] BROX S,ROSER S,HUSCH T,et al. Alternative single-solvent electrolytes based on cyanoesters for safer lithium-ion batteries[J]. ChemSusChem,2016,9(13):1704-1711. [53] PARK K,YU B C,GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials,2016,6(10):doi: 10.1002/aenm.201502534. [54] DOI T,MASUHARA R,HASHINOKUCHI M,et al. Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries[J]. Electrochimica Acta,2016,209:219-224. [55] HORIUCHI S,YOSHIZAWA-FUJITA M,TAKEOKA Y,et al. Physicochemical and electrochemical properties of N-methyl-N-methoxymethyl pyrrolidinium bis(fluorosulfonyl) amide and its lithium salt composites[J]. Journal of Power Sources,2016,325:637-640. [56] LIU B,YAN P F,XU W,et al. Electrochemically formed ultrafine metal oxide nanocatalysts for high-performance lithium-oxygen batteries[J]. Nano Letters,2016,16(8):4932-4939. [57] WUJCIK K H,WANG D R,RAGHUNATHAN A,et al. Lithium polysulfide radical anions in ether-based solvents[J]. Journal of Physical Chemistry C,2016,120(33):18403-18410. [58] SUN Y M,LEE H W,SEH Z W,et al. Lithium sulfide/metal nanocomposite as a high-capacity cathode prelithiation material[J]. Advanced Energy Materials,2016,6(12):doi: 10.1002/aenm.201600154. [59] HAN F D,YUE J,FAN X L,et al. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite[J]. Nano Letters,2016,16(7):4521-4527. [60] CUI Z M,ZU C X,ZHOU W D,et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials,2016,28(32):doi: 10.1002/adma.201601382. [61] KIM K R,LEE K S,AHN C Y,et al. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator[J]. Scientific Reports,2016,6:doi: 10.1038/srep32433. [62] SAHORE R,LEVIN B D,PAN M,et al. Design principles for optimum performance of porous carbons in lithium-sulfur batteries[J]. Advanced Energy Materials,2016,6(14):doi: 10.1002/aenm.201600134. [63] JUNG Y,KANG B. Understanding abnormal potential behaviors at the 1st charge in Li2S cathode material for rechargeable Li-S batteries[J]. Physical Chemistry Chemical Physics,2016,18(31):21500-21507. [64] GLENNEBERG J,ANDRE F,BARDENHAGEN I,et al. A concept for direct deposition of thin film batteries on flexible polymer substrate[J]. Journal of Power Sources,2016,324:722-728. [65] OTOYAMA M,ITO Y,HAYASHI A,et al. Investigation of state-of-charge distributions for LiCoO2 composite positive electrodes in all-solid-state lithium batteries by raman imaging[J]. Chemistry Letters,2016,45(7):810-812. [66] [67] CZNOTKA E,JESCHKE S,GRUNEBAUM M,et al. Highly-fluorous pyrazolide-based lithium salt in PVDF-HFP as solid polymer electrolyte[J]. Solid State Ionics,2016,292:45-51. [68] ZHOU W D,WANG S F,LI Y T,et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society,2016,138(30):9385-9388. [69] LI D J,DANILOV D L,GAO L,et al. Degradation mechanisms of C-6/LiFePO4 batteries:Experimental analyses of cycling-induced aging[J]. Electrochimica Acta,2016,210:445-455. [70] MORONI R,BORNER M,ZIELKE L,et al. Multi-scale correlative tomography of a Li-ion battery composite cathode[J]. Scientific Reports,2016,6:doi: 10.1038/srep30109. [71] SINGLE F,HORSTMANN B,LATZ A. Dynamics and morphology of solid electrolyte interphase (SEI) [J]. Physical Chemistry Chemical Physics,2016,18(27):17810-17814. [72] CHEN B B,ZHOU J Q,CAI R. Analytical model for crack propagation in spherical nano electrodes of lithium-ion batteries[J]. Electrochimica Acta,2016,210:7-14. [73] SUN F,ZIELKE L,MARKOETTER H,et al. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography[J]. ACS Nano,2016,10(8):7990-7997. [74] WEBER D A,SENYSHYN A,WELDERT K S,et al. Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12[J]. Chemistry of Materials,2016,28(16):5905-5915. [75] ABDELLAHI A,URBAN A,DACEK S,et al. Understanding the effect of cation disorder on the voltage profile of lithium transition-metal oxides[J]. Chemistry of Materials,2016,28(15):5373-5383. [76] LANG M,DARMA M S,KLEINER K,et al. Post mortem analysis of fatigue mechanisms in LiNi0.8Co0.15Al0.05O2-LiNi0.5 Co0.2 Mn0.3O2- LiMn2O4/graphite lithium ion batteries[J]. Journal of Power Sources,2016,326:397-409. [77] SATO S,UNEMOTO A,IKEDA T,et al. Carbon-rich active materials with macrocyclic nanochannels for high-capacity negative electrodes in all-solid-state lithium rechargeable batteries[J]. Small,2016,12(25):3472. [78] SMYREK P,KIM H,ZHENG Y,et al. Laser-printing and femtosecond laser-structuring of electrode materials for the manufacturing of 3D lithium-ion micro-batteries. Laser 3D Manufacturing III[C]//Unite States:California,2016:doi: 10.1117/12.2211546. [79] ZIELKE L,SUN F,MARKOTTER H,et al. Synchrotron X-ray tomographic study of a silicon electrode before and after discharge and the effect of cavities on particle fracturing[J]. ChemElectroChem,2016,3(7):1170-1177. [80] PRIIMÄGI P,BRANDELL D,SRIVASTAV S,et al. Optimizing the design of 3D-pillar microbatteries using finite element modelling[J]. Electrochimica Acta,2016,209:138 -148. [81] LIM J,LI Y Y,ALSEM D H,et al. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles[J]. Science,2016,353(6299):566-571. [82] LIU Z,VERHALLEN T W,SINGH D P,et al. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4[J]. Journal of Power Sources,2016,324:358-367. [83] WANG J J,CHEN-WIEGART Y C,ENG C,et al. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles[J]. Nature Communications,2016,7:doi: 10.1038/ncomms12372. [84] GENT W E,LI Y Y,AHN S,et al. Persistent state-of-charge heterogeneity in relaxed, partially charged Li1-xNi1/3Co1/3Mn1/3O2 secondary particles[J]. Advanced Materials,2016,28(31):doi: 10.1002/adma.201601273. [85] WANG Z Y,LEE J Z,XIN H L,et al. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries[J]. Journal of Power Sources,2016,324:342-348. [86] DELP S A,BORODIN O,OLGUIN M,et al. Importance of reduction and oxidation stability of high voltage electrolytes and additives[J]. Electrochimica Acta,2016,209:498-510. [87] LUCK J,LATZ A. Theory of reactions at electrified interfaces[J]. Physical Chemistry Chemical Physics,2016,18(27):17799-17804. [88] BENITEZ L,SEMINARIO J M. Electron transport and electrolyte reduction in the solid-electrolyte interphase of rechargeable lithium ion batteries with silicon anodes[J]. Journal of Physical Chemistry C,2016,120(32):17978-17988. [89] LEGGESSE E G,TSAU K H,LIU Y T,et al. Adsorption and decomposition of ethylene carbonate on LiMn2O4 cathode surface[J]. Electrochimica Acta,2016,210:61-70. [90] URBAN A,MATTS I,ABDELLAHI A,et al. Computational design and preparation of cation-disordered oxides for high-energy-density Li-ion batteries[J]. Advanced Energy Materials,2016,6(15):doi: 10.1002/aenm.201600488. [91] WANG X L,XIAO R J,LI H,et al. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in beta-Li3PS4 electrolyte[J]. Physical Chemistry Chemical Physics,2016,18(31):21269-21277. [92] TANAKA Y,IKEDA M,SUMITA M,et al. First-principles analysis on role of spinel (111) phase boundaries in Li4+3xTi5O12 Li-ion battery anodes[J]. Physical Chemistry Chemical Physics,2016,18(33):23383-23388. [93] MORADABADI A,BAKHTIARI M,KAGHAZCHI P. Effect of anode composition on solid electrolyte interphase formation[J]. Electrochimica Acta,2016,213:8-13. [94] SEIDL L,MARTENS S,MA J W,et al. In situ scanning tunneling microscopy studies of the SEI formation on graphite electrodes for Li+-ion batteries[J]. Nanoscale,2016,8(29):14004-14014. [95] SUMITA M,TANAKA Y,IKEDA M,et al. Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries[J]. Journal of Physical Chemistry C,2016,120(25):13332-13339. [96] ZHANG W,BOCK D C,PELLICCIONE C J,et al. Insights into ionic transport and structural changes in magnetite during multiple-electron transfer reactions[J]. Advanced Energy Materials,2016,6(10):doi: 10.1002/aenm.201502471. [97] HOWARD J,HOLZWARTH N A. First-principles simulations of the porous layered calcogenides Li2+xSnO3 and Li2+xSnS3[J]. Physical Review B,2016:doi: 10.1103/PhysRevB.94.064108. [98] CHONG E Q,LINGERFELT D B,PETRONE A,et al. Classical or quantum? A computational study of small ion diffusion in II-VI semiconductor quantum dots[J]. Journal of Physical Chemistry C,2016,120(34):19434-19441. [99] LIAO N B,ZHENG B R,ZHANG M,et al. Atomic investigation on reversible lithium storage in amorphous silicon oxycarbide as a high power anode material[J]. Journal of Materials Chemistry A,2016,4(31):12328-12333. [100] KANG J,HAN B. First-principles characterization of the unknown crystal structure and ionic conductivity of Li7P2S8I as a solid electrolyte for high-voltage Li ion batteries[J]. Journal of Physical Chemistry Letters,2016,7(14):2671-2675. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[10] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[11] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[12] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[13] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[14] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[15] | Ying TAO, Lingfei ZHAO, Yunxiao WANG, Yuliang CAO, Shulei CHOU. Stabilization of sodium metal anodes by dual-salt high concentration electrolyte [J]. Energy Storage Science and Technology, 2022, 11(4): 1103-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||