[1] 欧阳明高. 中国新能源汽车的研发及展望[J]. 科技导报, 2016, 34(6):13-20. OUYANG Minggao. New energy vehicle research and development in China[J]. Science & Technology Review, 2016, 34(6):13-20.
[2] FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267.
[3] LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226:272-288.
[4] WANG Qingsong, PING Ping, ZHAO Xuejuan, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224.
[5] HUANG Peifeng, WANG Qingsong, LI Ke, et al. The combustion behavior of large-scale lithium battery[J]. Scientific Reports, 2015, 5:7788.
[6] 李毅, 于东兴, 张少禹, 等. 锂离子电池火灾危险性研究[J]. 中国安全科学学报, 2012, 22(11):36-41. LI Yi, YU Dongxing, ZHANG Shaoyu, et al. Research on fire hazard of lithium-ion battery[J]. China Safety Science Journal, 2012, 22(11):36-41.
[7] SOMANDEPALLI V, MARR K, HORN Q. Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries[J]. SAE International Journal of Alternative Powertrains, 2014, 3(1):98-104.
[8] GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-Impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70):57171-57186.
[9] 龙斌, 徐嵘, 刘怡, 等. 锂离子电芯滥用时泄放气体的可燃性检测[J]. 电池, 2014, 44(2):121-123. LONG Bin, XU Rong, LIU Yi, et al. Gas-flammability testing for Liion cells during abusing[J]. Battery Bimonthly, 2014, 44(2):121-123.
[10] LI Weifeng, WANG Hewu, OUYANG Minggao, et al. Theoretical and experimental analysis of the lithium-ion battery thermal runaway process based on the internal combustion engine combustion theory[J]. Energy Conversion and Management, 2019, 185:211-222. |