Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (3): 583-594.doi: 10.12028/j.issn.2095-4239.2019.0064
Previous Articles Next Articles
JIN Zhou, ZHAN Yuanjie, QI Wenbing, TIAN Feng, ZHAO Junnian, WU Yida, ZHANG Hua, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie
Received:
2019-04-19
Online:
2019-05-01
Published:
2019-05-01
CLC Number:
JIN Zhou, ZHAN Yuanjie, QI Wenbing, TIAN Feng, ZHAO Junnian, WU Yida, ZHANG Hua, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2019 to Mar. 31, 2019)[J]. Energy Storage Science and Technology, 2019, 8(3): 583-594.
[1] RASTGOO-DEYLAMI M, JAVANBAKHT M, OMIDVAR H. Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2[J]. Solid State Ionics, 2019, 331:74-88. [2] RAN Q W, ZHAO H Y, WANG Q, et al. Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature[J]. Electrochimica Acta, 2019, 299:971-978. [3] KIM U H, KUO L Y, KAGHAZCHI P, et al. Quaternary layered Nirich NCMA cathode for lithium-ion batteries[J]. ACS Energy Letters, 2019, 4(2):576-582. [4] LI W, ASL H Y, XIE Q, et al. Collapse of LiNi1-x-yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(13):5097-5101. [5] DONG H, LI S M, LIU H, et al. Facile synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 with enlarged exposed active planes for Li-ion batteries[J]. Ionics, 2019, 25(2):827-834. [6] SONG H J, JANG S H, AHN J, et al. Artificial cathode-electrolyte interphases on nickel-rich cathode materials modified by silyl functional group[J]. Journal of Power Sources, 2019, 416:1-8. [7] SUN Z H, LI Z, GAO L F, et al. Grafting benzenediazonium tetrafluoroborate onto LiNixCoyMnzO2 materials achieves subzerotemperature high-capacity lithium-ion storage via a diazonium softchemistry method[J]. Advanced Energy Materials, 2019, 9(6):doi:https://doi.org/10.1002/aenm.201802946. [8] TANG W J, CHEN Z X, XIONG F, et al. An effective etching-induced coating strategy to shield Li0.80Co0.1Mn0.1O2 electrode materials by LiAlO2[J]. Journal of Power Sources, 2019, 412:246-254. [9] CHEN C, XU M, ZHANG K, et al. Atomically ordered and epitaxially grown surface structure in core-shell NCA/NiAl2O4 enabling high voltage cyclic stability for cathode application[J]. Electrochimica Acta, 2019, 300:437-444. [10] JI H, URBAN A, KITCHAEV D A, et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries[J]. Nature Communications, 2019, 10:doi:https://doi.org/10.1038/s41467-019-08490-w. [11] HONG J, GENT W E, XIAO P, et al. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides[J]. Nature Materials, 2019, 18(3):256-265. [12] LIU J F, CHEN Y F, XU J, et al. Effectively enhanced structural stability and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials via poly-(3,4-ethylenedioxythiophene)-in situ coated for high voltage Li-ion batteries[J]. RSC Advances, 2019, 9(6):3081-3091. [13] MA Y, CHEN K, MA J, et al. A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries[J]. Energy & Environmental Science, 2019, 12(1):273-280. [14] EMANI S, LIU C H, ASHURI M, et al. Li3BN2 as a transition metal free, high capacity cathode for Li-ion batteries[J]. ChemElectroChem, 2019, 6(2):320-325. [15] BHARGAV A, CHANG C H, FU Y, et al. Rationally designed highsulfur-content polymeric cathode material for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(6):6136-6142. [16] CHEN Q L, ZHENG H F, YANG Y F, et al. Ion-and electron-conductive buffering layer-modified Si film for use as a high-rate long-term lithiumion battery anode[J]. ChemSusChem, 2019, 12(1):252-260. [17] HARUTA M, DOI T, INABA M. Oxygen-content dependence of cycle performance and morphology changes in amorphous-SiOx thinfilm negative electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(2):A258-A263. [18] HUA Q, DAI D, ZHANG C, et al. Transformation of sludge Si to nano-Si/SiOx structure by oxygen inward diffusion as precursor for high performance anodes in lithium ion batteries[J]. Nanoscale Research Letters, 2018, 13:doi:10.1186/s11671-018-2549-7. [19] PAN K, ZOU F, CANOVA M, et al. Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-ion batteries[J]. Journal of Power Sources, 2019, 413:20-28. [20] ZHANG W, LIU Y, LI W, et al. Au nanocrystals decorated TiO2 nanotube arrays as anode material for lithium ion batteries[J]. Applied Surface Science, 2019, 476:948-958. [21] LI P, HWANG J Y, SUN Y K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J]. ACS Nano, 2019, 13(2):2624-2633. [22] CHANG W J, KIM S H, HWANG J, et al. Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries[J]. Nature Communications, 2018, 9:doi:https://doi.org/10.1038/s41467-018-05986-9. [23] YAN C, HUANG T, ZHENG X, et al. Waterborne polyurethane as a carbon coating for micrometre-sized silicon-based lithium-ion battery anode material[J]. Royal Society Open Science, 2018, 5(8):doi:https://doi.org/10.1098/rsos.180311. [24] KIM D, LI N, SHEEHAN C J, et al. Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A·g(-1)[J]. Nanoscale, 2018, 10(16):7343-7351. [25] SHEN B H, VEITH G M, TENHAEFF W E. Silicon surface tethered polymer as artificial solid electrolyte interface[J]. Scientific Reports, 2018, 8:doi:https://doi.org/10.1038/s41598-018-30000-z. [26] DONG K, MARKOTTER H, SUN F, et al. In situ and operando tracking of microstructure and volume evolution of silicon electrodes by using synchrotron X-ray imaging[J]. ChemSusChem, 2019, 12(1):261-269. [27] LIANG Z, YAN K, ZHOU G, et al. Composite lithium electrode with mesoscale skeleton via simple mechanical deformation[J]. Science Advances, 2019, 5(3):doi:10.1126/sciadv.aau5655. [28] LIU S, DENG L, GUO W, et al. Bulk nanostructured materials design for fracture-resistant lithium metal anodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2019:e1807585-e1807585. [29] SHEN X, LI Y, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10:doi:https://doi.org/10.1038/s41467-019-08767-0. [30] LIU S, XIA X, DENG S, et al. In situ solid electrolyte interphase from spray quenching on molten Li:A new way to construct highperformance lithium-metal anodes[J]. Advanced Materials, 2019, 31(3):doi:https://doi.org/10.1002/adma.201806470. [31] CHEN K H, SANCHEZ A J, KAZYAK E, et al. Synergistic effect of 3D current collectors and ALD surface modification for high coulombic efficiency lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(4):doi:https://doi.org/10.1002/aenm.201802534. [32] SUN Y P, ZHAO Y, WANG J W, et al. A novel organic "Polyurea" thin film for ultralong-life lithium-metal anodes via molecularlayer deposition[J]. Advanced Materials, 2019, 31(4):https://doi. org/10.1002/adma.201806541. [33] LIANG X, WANG J, ZHANG S, et al. Fabrication of uniform Siincorporated SnO2 nanoparticles on graphene sheets as advanced anode for Li-ion batteries[J]. Applied Surface Science, 2019, 476:28-35. [34] SATO S, UNEMOTO A, IKEDA T, et al. Carbon-rich active materials with macrocyclic nanochannels for high-capacity negative electrodes in all-solid-state lithium rechargeable batteries[J]. Small, 2016. 12(25):3381-3387. [35] GAO P, CHEN Z, ZHAO-KARGER Z, et al. A porphyrin complex as a self-conditioned electrode material for high-performance energy storage[J]. Angewandte Chemie-International Edition, 2017, 56(35):10341-10346. [36] BUANNIC L, NAVIROJ M, MILLER S M, et al. Dense freezecast Li7La3Zr2O12 solid electrolytes with oriented open porosity and contiguous ceramic scaffold[J]. Journal of the American Ceramic Society, 2019, 102(3):1021-1029. [37] KRAUSKOPF T, HARTMANN H, ZEIER W G, et al. Towards a fundamental understanding of the lithium metal anode in solid state batteries-An electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2019, 11(15):14463-14477 [38] LEWIS J A, CORTES F J Q, BOEBINGER M G, et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure[J]. ACS Energy Letters, 2019, 4(2):591-599. [39] BERLINER M D, MCGILL B C, MAJEED M, et al. Electrochemical kinetics of lithium plating and stripping in solid polymer electrolytes:Pulsed voltammetry[J]. Journal of the Electrochemical Society, 2019, 166(2):A297-A304. [40] PAIK B, WOLCZYK A. Lithium imide (Li2NH) as a solid-state electrolyte for electrochemical energy storage applications[J]. Journal of Physical Chemistry C, 2019, 123(3):1619-1625. [41] FROBOESE L, VAN DER SICHEL J F, LOELLHOEFFEL T, et al. Effect of microstructure on the ionic conductivity of an all solid-state battery electrode[J]. Journal of the Electrochemical Society, 2019, 166(2):A318-A328. [42] TIAN X L, YI Y K, YANG P, et al. High-charge density polymerized ionic networks boosting high ionic conductivity as quasi-solid electrolytes for high-voltage batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(4):4001-4010. [43] NAIR J R, COLO F, KAZZAZI A, et al. Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Libased polymer batteries[J]. Journal of Power Sources, 2019, 412:398-407. [44] SWAMY T, CHEN X, CHIANG Y M. Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes[J]. Chemistry of Materials, 2019, 31(3):707-713. [45] DOMI Y, USUI H, YAMAGUCHI K, et al. Silicon-based anodes with long cycle life for lithium-ion batteries achieved by significant suppression of their volume expansion in ionic-liquid electrolyte[J]. ACS Applied Materials & Interfaces, 2019, 11(3):2950-2960. [46] BOLLOJU S, CHIOUC Y, VIKRAMADITYA T, et al. (Pentafluorophenyl) diphenylphosphine as a dual-functional electrolyte additive for LiNi0.5Mn1.5O4 cathodes in high-voltage lithium-ion batteries[J]. Electrochimica Acta, 2019, 299:663-671. [47] TORNHEIM A, GARCIA J C, SAHORE R, et al. Decomposition of phosphorus-containing additives at a charged NMC surface through potentiostatic holds[J]. Journal of the Electrochemical Society, 2019, 166(4):A440-A447. [48] REN X, CHEN S, LEE H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem., 2018, 4(8):1877-1892. [49] JEONG S, KIM K C, LEE S R, et al. Cathode electrolyte interface of lithium difluorobis(oxalato) phosphate at 4.4 V operation of LiCoO2 for high-energy lithium-ion batteries[J]. Electrochimica Acta, 2019, 300:156-162. [50] PHAM H Q, HWANG E H, KWON Y G, et al. Approaching the maximum capacity of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathodes by charging to high-voltage in a non-flammable electrolyte of propylene carbonate and fluorinated linear carbonates[J]. Chemical Communications, 2019, 55(9):1256-1258. [51] LIN Y C, ZHANG H, YUE X P, et al. Triallyl phosphite as an electrolyte additive to improve performance at elevated temperature of LiNi0.6Co0.2Mn0.2O2/graphite cells[J]. Journal of Electroanalytical Chemistry, 2019, 832:408-416. [52] INAMOTO J, FUKUTSUKA T, MIYAZAKI K, et al. Characterization of the interface between LiMn2O4 thin-film electrode and LiBOBbased electrolyte solution by redox reaction of ferrocene[J]. Electrochemistry, 2018, 86(5):254-259. [53] SHARON D, SHARON P, HIRSHBERG D, et al. 2,4-dimethoxy-2,4-dimethylpentan-3-one:An aprotic solvent designed for stability in LiO-2 cells[J]. Journal of the American Chemical Society, 2017, 139(34):11690-11693. [54] WANG D, ZHANG F, HE P, et al. A versatile halide ester enabling Li-anode stability and a high rate capability in lithium-oxygen batteries[J]. Angewandte Chemie-International Edition, 2019, 58(8):2355-2359. [55] HAMIDAH N L, WANG F M, NUGROHO G. The understanding of solid electrolyte interface (SEI) formation and mechanism as the effect of flouro-o-phenylenedimaleimaide (F-MI) additive on lithium-ion battery[J]. Surface and Interface Analysis, 2019, 51(3):345-352. [56] ALVARADO J, SCHROEDER M A, POLLARD T P, et al. Bisalt ether electrolytes:A pathway towards lithium metal batteries with Ni-rich cathodes[J]. Energy & Environmental Science, 2019, 12(2):780-794. [57] DONG X, LIN Y, LI P, et al. High-energy rechargeable metallic lithium battery at -70℃ enabled by a cosolvent electrolyte[J]. Angewandte Chemie (International ed. in English), 2019:doi:https://doi.org/10.1002/anie.201900266. [58] ROSERO-NAVARRO N C, MIURA A, TADANAGA K. Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery[J]. Journal of Sol-Gel Science and Technology, 2019, 89(1):303-309. [59] WANG D W, SUN Q, LUO J, et al. Mitigating the interfacial degradation in cathodes for high-performance oxide-based solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(5):4954-4961. [60] LIU L, LI M, CHU L, et al. Facile fabrication of flexible Si-based nanocomposite films as high-rate anodes by layer-by-layer selfassembly[J]. Applied Surface Science, 2019, 476:501-512. [61] KAWAGUCHI T, NAKAMURA H, WATANO S. Dry coating of electrode particle with model particle of sulfide solid electrolytes for all-solid-state secondary battery[J]. Powder Technology, 2018, 323:581-587. [62] TSUKASAKI H, MORI Y, OTOYAMA M, et al. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer[J]. Scientific Reports, 2018, 8:doi:https://doi. org/10.1038/s41598-018-24524-7. [63] XIA Q Y, SUN S, XU J, et al. Self-standing 3D cathodes for all-solidstate thin film lithium batteries with improved interface kinetics[J]. Small, 2018, 14(52):doi:https://doi.org/10.1002/smll.201804149. [64] SALIAN G D, LEBOUIN C, GALEYEVA M, et al. Electrodeposition of polymer electrolyte into porous LiNi0.5Mn1.5O4 for high performance all-solid-state microbatteries[J]. Frontiers in Chemistry, 2019, 6:doi:10.3389/fchem.2018.00675. [65] SUZUKI K, KATO D, HARA K, et al. Composite sulfur electrode for all-solid-state lithium-sulfur battery with Li2S-GeS2-P2S5-based thiolisicon solid electrolyte[J]. Electrochemistry, 2018, 86(1):1-5. [66] NOH S, NICHOLS W T, CHO M, et al. Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte[J]. Journal of Electroceramics, 2018, 40(4):293-299. [67] CHEN K, SHINJO S, SAKUDA A, et al. Morphological effect on reaction distribution influenced by binder materials in composite electrodes for sheet-type all-solid-state lithium-ion batteries with the sulfide-based solid electrolyte[J]. Journal of Physical Chemistry C, 2019, 123(6):3292-3298. [68] KIZILASLAN A, AKBULUT H. Assembling all-solid-state lithiumsulfur batteries with Li3N-protected anodes[J]. ChemPlusChem, 2019, 84(2):183-189. [69] WESTOVER A S, DUDNEY N J, SACCI R L, et al. Deposition and confinement of Li metal along an artificial lipon-lipon interface[J]. ACS Energy Letters, 2019, 4(3):651-655. [70] RAGONES H, MENKIN S, KAMIR Y, et al. Towards smart free formfactor 3D printable batteries[J]. Sustainable Energy & Fuels, 2018. 2(7):1542-1549. [71] OTOYAMA M, SAKUDA A, HAYASHI A, et al. Optical microscopic observation of graphite composite negative electrodes in all-solid-state lithium batteries[J]. Solid State Ionics, 2018. 323:123-129. [72] SHU C Z, LONG J P, DOU S X, et al. Component-interaction reinforced quasi-solid electrolyte with multifunctionality for flexible Li-O-2 battery with superior safety under extreme conditions[J]. Small, 2019, 15(6):doi:https://doi.org/10.1002/smll.201804701. [73] CHANG Z, HE Y B, DENG H, et al. A multifunctional silly-putty nanocomposite spontaneously repairs cathode composite for advanced Li-S batteries[J]. Advanced Functional Materials, 2018, 28(50):doi:https://doi.org/10.1002/adfm.201804777. [74] YANG G, TAN J, JIN H, et al. Creating effective nanoreactors on carbon nanotubes with mechanochemical treatments for high-arealcapacity sulfur cathodes and lithium anodes[J]. Advanced Functional Materials, 2018, 28(32):doi:https://doi.org/10.1002/adfm.201800595. [75] GUPTA A, BHARGAV A, MANTHIRAM A. Highly solvating electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(6):doi:https://doi.org/10.1002/aenm.201803096. [76] LIM W G, JO C, CHO A, et al. Approaching ultrastable high-rate Li-S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation[J]. Advanced Materials, 2019, 31(3):doi:https://doi.org/10.1002/adma.201806547. [77] CHEN X, PENG L, WANG L, et al. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping[J]. Nature Communications, 2019, 10:doi:https://doi.org/10.1038/s41467-019-08818-6. [78] DAN THIEN N, HOEFLING A, YEE M, et al. Enabling high-rate and safe lithium ion-sulfur batteries by effective combination of sulfurcopolymer cathode and hard-carbon anode[J]. ChemSusChem, 2019, 12(2):480-486. [79] LI L S, ERB R M, WANG J J, et al. Fabrication of low-tortuosity ultrahigh-area-capacity battery electrodes through magnetic alignment of emulsion-based slurries[J]. Advanced Energy Materials, 2019, 9(2):doi:https://doi.org/10.1002/aenm.201802472. [80] ZHENG J X, ZHAO Q, LIU X T, et al. Nonplanar electrode architectures for ultrahigh areal capacity batteries[J]. ACS Energy Letters, 2019, 4(1):271-275. [81] SUN F, GAO R, ZHOU D, et al. Revealing hidden facts of Li anode in cycled lithium oxygen batteries through X-ray and neutron tomography[J]. ACS Energy Letters, 2019, 4(1):306-316. [82] CHENG Q, WEI L, LIU Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy[J]. Nature Communications, 2018, 9:doi:https://doi.org/10.1038/s41467-018-05289-z. [83] PARK J, HYEON S, JEONG S, et al. Performance enhancement of Liion battery by laser structuring of thick electrode with low porosity[J]. Journal of Industrial and Engineering Chemistry, 2019, 70:178-185. [84] WEISS M, SEIDLHOFER B K, GEISS M, et al. Unraveling the formation mechanism of solid-liquid electrolyte interphases on LiPON thin films[J]. ACS Applied Materials & Interfaces, 2019, 11(9):9539-9547. [85] BUGRYNIEC P J, DAVIDSON J N, CUMMING D J, et al. Pursuing safer batteries:Thermal abuse of LiFePO4 cells[J]. Journal of Power Sources, 2019, 414:557-568. [86] LEE J Z, WYNN T A, SCHROEDER M A, et al. Cryogenic focused ion beam characterization of lithium metal anodes[J]. ACS Energy Letters, 2019, 4(2):489-493. [87] HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3):187-196. [88] LIANG J, HUO F, ZHANG Z, et al. Controlling the phenolic resinbased amorphous carbon content for enhancing cycling stability of Si nanosheets@C anodes for lithium-ion batteries[J]. Applied Surface Science, 2019, 476:1000-1007. [89] BUCHNER F, FINGERLE M, KIM J, et al. Interaction of ultrathin films of ethylene carbonate with oxidized and reduced lithium cobalt oxide-A model study of the cathode|electrolyte interface in Li-ion batteries[J]. Advanced Materials Interfaces, 2019, 6(3):doi:https://doi. org/10.1002/admi.201801650. [90] CAMPBELL I D, MARZOOK M, MARINESCU M, et al. How observable is lithium plating? Differential voltage analysis to identify and quantify lithium plating following fast charging of cold lithiumion batteries[J]. Journal of the Electrochemical Society, 2019, 166(4):A725-A739. [91] DING C C, WU S Y, XU Y Q, et al. Studies on the local structures for the trigonal Ni3+ centers in cathode materials LiAlyCo1-yO2(y=0, 0.1, 0.5, and 0.8)[J]. Magnetic Resonance in Chemistry, 2018, 56(9):803-809. [92] OKUNO Y, USHIROGATA K, SODEYAMA K, et al. Structures, electronic states, and reactions at interfaces between LiNi0.5Mn1.5O4 cathode and ethylene carbonate electrolyte:A first-principles study[J]. Journal of Physical Chemistry C, 2019, 123(4):2267-2277. [93] BETZ J, BIEKER G, MEISTER P, et al. Theoretical versus practical energy:A plea for more transparency in the energy calculation of different rechargeable battery systems[J]. Advanced Energy Materials, 2019, 9(6):doi:https://doi.org/10.1002/aenm.201803170. [94] BROGIOLI D, LANGER F, KUN R, et al. Space-charge effects at the Li7La3Zr2O12/poly(ethylene oxide) interface[J]. ACS Applied Materials & Interfaces, 2019, 11(12):11999-12007. [95] DEUTSCHEN T, GASSER S, SCHALLER M, et al. Modeling the self-discharge by voltage decay of a NMC/graphite lithium-ion cell[J]. Journal of Energy Storage, 2018, 19:113-119. [96] GALUSHKIN N E, YAZVINSKAYA N N, GALUSHKIN D N. Mechanism of gases generation during lithium-ion batteries cycling[J]. Journal of the Electrochemical Society, 2019, 166(6):A897-A908. [97] SHIN Y K, KIM M C, MOON S H, et al. Pore-controlled polymer membrane with Mn(Ⅱ) ion trapping effect for high-rate performance LiMn2O4 cathode[J]. Journal of Solid State Electrochemistry, 2019, 23(2):475-484. [98] BELANGER R L, COMMARIEU B, PAOLELLA A, et al. Diffusion control of organic cathode materials in lithium metal battery[J]. Scientific Reports, 2019, 9:doi:https://doi.org/10.1038/s41598-019-38728-y. [99] LI C, LIU S, SHI C, et al. Two-dimensional molecular brushfunctionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes[J]. Nature Communications, 2019, 10(1):1363-1363. [100] ATTIA P M, DAS S, HARRIS S J, et al. Electrochemical kinetics of SEI growth on carbon black:Part I. experiments[J]. Journal of the Electrochemical Society, 2019, 166(4):E97-E106. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[12] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[13] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[14] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[15] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||