储能科学与技术 ›› 2019, Vol. 8 ›› Issue (2): 386-398.doi: 10.12028/j.issn.2095-4239.2019.0016
张华, 田丰, 起文斌, 金周, 赵俊年, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2019-02-20
修回日期:
2019-02-22
出版日期:
2019-03-01
发布日期:
2019-03-01
通讯作者:
黄学杰。E-mail:xjhuang@iphy.ac.cn
作者简介:
张华(1993-),男,硕士研究生,研究方向为锂离子电池正极材料,E-mail:zhanghua15@mails.ucas.ac.cn
基金资助:
ZHANG Hua, TIAN Feng, QI Wenbin, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2019-02-20
Revised:
2019-02-22
Online:
2019-03-01
Published:
2019-03-01
摘要: 该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2018年12月1日至2019年1月31日上线的锂电池研究论文,共有2472篇,选择其中100篇加以评论。正极材料主要研究了三元材料、富锂相材料和尖晶石材料的结构和表面结构随电化学脱嵌锂变化以及掺杂和表面包覆及界面层改进对其循环寿命的影响。硅基和锡基复合负极材料研究侧重于嵌脱锂机理以及SEI界面层,金属锂负极的研究侧重于通过集流体和表面覆盖层的设计以及电解液添加剂来提高其循环性能。固态电解质、电解液添加剂、固态电池、锂硫电池的论文也有多篇。原位分析偏重于界面SEI和电极反应机理,理论模拟工作涵盖储锂机理、动力学、界面SEI形成机理分析和固体电解质等。除了以材料为主的研究之外,还有多篇针对电池分析、电池管理系统技术的研究论文。
中图分类号:
张华, 田丰, 起文斌, 金周, 赵俊年, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2018.12.1—2019.1.31)[J]. 储能科学与技术, 2019, 8(2): 386-398.
ZHANG Hua, TIAN Feng, QI Wenbin, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Dec.1,2018 to Jan.31,2019)[J]. Energy Storage Science and Technology, 2019, 8(2): 386-398.
[1] TATARA R, KARAYAYLALI P, YU Y, et al. The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery[J]. Journal of the Electrochemical Society, 2018, 166(3):A5090-A5098. [2] TSUKASAKI H, FUKUDA W, MORIMOTO H, et al. Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries[J]. Scientific Reports, 2018, 8:https://doi.org/10.1038/s41598-018-34017-2. [3] QIAN J, LIU L, YANG J, et al. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries[J]. Nature Communications, 2018, 9:https://doi.org/10.1038/s41467-018-07296-6. [4] YU H, SO Y G, REN Y, et al. Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries[J]. Journal of the American Chemical Society, 2018, 140(45):15279-15289. [5] DUAN Y, YANG L, ZHANG M J, et al. Insights into Li/Ni ordering and surface reconstruction during synthesis of Ni-rich layered oxides[J]. Journal of Materials Chemistry A, 2019, 7(2):513-519. [6] MUKHERJEE P, FAENZA N V, PEREIRA N, et al. Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.050O2(NCA) under high voltage and elevated temperature conditions[J]. Chemistry of Materials, 2018, 30(23):8431-8445. [7] MU L, YUAN Q, TIAN C, et al. Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials[J]. Nature Communications, 2018, 9:https://doi.org/10.1038/s41467-018-05172-x. [8] SHⅡBA H, ZETTSU N, KIDA S, et al. Impact of trace extrinsic defect formation on the local symmetry transition in spinel LiNi0.5Mn1.5O4-systems and their electrochemical characteristics[J]. Journal of Materials Chemistry A, 2018, 6(45):22749-22757. [9] CHEN Y, BEN L, CHEN B, et al. Impact of high valence state cation ti/ta surface doping on the stabilization of spinel LiNi0.5Mn1.5O4 cathode materials:A systematic density functional theory investigation[J]. Advanced Materials Interfaces, 2018, 5(12):https://doi.org/10.1002/admi.201800077. [10] HENDRIKS R, CUNHA D M, SINGH D P, et al. Enhanced lithium transport by control of crystal orientation in spinel LiMn2O4 thin film cathodes[J]. ACS Applied Energy Materials, 2018, 1(12):7046-7051. [11] IDEMOTO Y, TEJIMA F, ISHIDA N, et al. Average, electronic, and local structures of LiMn2-xAlxO4 in charge-discharge process by neutron and synchrotron X-ray[J]. Journal of Power Sources, 2019, 410:38-44. [12] OTTENY F, KOLEK M, BECKING J, et al. Unlocking full discharge capacities of poly(vinylphenothiazine) as battery cathode material by decreasing polymer mobility through cross-linking[J]. Advanced Energy Materials, 2018, 8(33):https://doi.org/10.1002/aenm.201802151. [13] WANG S, LI F, EASLEY A D, et al. Real-time insight into the doping mechanism of redox-active organic radical polymers[J]. Nature Materials, 2019, 18(1):69-75. [14] KIM S H, KIM Y S, BAEK W J, et al. Nanoscale electrical resistance imaging of solid electrolyte interphases in lithium-ion battery anodes[J]. Journal of Power Sources, 2018, 407:1-5. [15] AGHAJAMALI M, XIE H, JAVADI M, et al. Size and surface effects of silicon nanocrystals in graphene aerogel composite anodes for lithium ion batteries[J]. Chemistry of Materials, 2018, 30(21):7782-7792. [16] CAO Y, BENNETT J C, DUNLAP R A, et al. A simple synthesis route for high-capacity SiOx anode materials with tunable oxygen content for lithium-ion batteries[J]. Chemistry of Materials, 2018, 30(21):7418-7422. [17] WANG J, LIAO L, LI Y, et al. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries[J]. Nano Letters, 2018, 18(11):7060-7065. [18] WEI D, MAO J, ZHENG Z, et al. Achieving a high loading Si anode via employing a triblock copolymer elastomer binder, metal nanowires and a laminated conductive structure[J]. Journal of Materials Chemistry A, 2018, 6(42):20982-20991. [19] BATMAZ R, HASSAN F M, HIGGINS D, et al. Highly durable 3D conductive matrixed silicon anode for lithium-ion batteries[J]. Journal of Power Sources, 2018, 407:84-91. [20] LI J Y, LI G, ZHANG J, et al. Rational design of robust Si/C microspheres for high tap density anode materials[J]. ACS Applied Materials & Interfaces, 2019, 11(4):4057-4064. [21] JUAREZ-ROBLES D, GONZALEZ-MALABET H, L'ANTIGUA M, et al. Elucidating lithium alloying induced degradation evolution in high capacity electrodes[J]. ACS Applied Materials & Interfaces, 2018:doi:10.1021/acsami.8b14242. [22] LEE J H, OH S H, JEONG S Y, et al. Rattle-type porous Sn/C composite fibers with uniformly distributed nanovoids containing metallic Sn nanoparticles for high-performance anode materials in lithium-ion batteries[J]. Nanoscale, 2018, 10(45):21483-21491. [23] NITA C, FULLENWARTH J, MONCONDUIT L, et al. Understanding the Sn loading impact on the performance of mesoporous carbon/sn-based nanocomposites in Li-ion batteries[J]. Chemelectrochem, 2018, 5(21):3249-3257. [24] DUAN H, ZHANG J, CHEN X, et al. Uniform nucleation of lithium in 3d current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. Journal of the American Chemical Society, 2018, 140(51):18051-18057. [25] ADAIR K R, IQBAL M, WANG C, et al. Towards high performance Li metal batteries:Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes[J]. Nano Energy, 2018, 54:375-382. [26] LI G, LIU Z, HUANG Q, et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects[J]. Nature Energy, 2018, 3(12):1076-1083. [27] JI K, HAN J, HIRATA A, et al. Lithium intercalation into bilayer graphene[J]. Nature Communications, 2019, 10(1):275-275. [28] ZHAO N, FANG R, HE M H, et al. Cycle stability of lithium/garnet/lithium cells with different intermediate layers[J]. Rare Metals, 2018, 37(6):473-479. [29] SUN Y, ZHAO Y, WANG J, et al. A novel organic "polyurea" thin film for ultralong-life lithium-metal anodes via molecular-layer deposition[J]. Advanced Materials (Deerfield Beach, Fla.), 2019, 31(4):e1806541-e1806541. [30] ZOU P, WANG Y, CHIANG S W, et al. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-02888-8. [31] SHI P, LI T, ZHANG R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced materials (Deerfield Beach, Fla.), 2019:e1807131-e1807131. [32] ASSEGIE A A, CHUNG C C, TSAI M C, et al. Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries[J]. Nanoscale, 2019:doi:10.1039/C8NR06980H. [33] CUI J, YAO S, IHSAN-UL-HAQ M, et al. Correlation between Li plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes[J]. Advanced Energy Materials, 2019, 9(1):https://doi.org/10.1002/aenm.201802777. [34] DUAN H, ZHANG J, CHEN X, et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. Journal of the American Chemical Society, 2018, 140(51):18051-18057. [35] SALVATIERRA R V, LOPEZ-SILVA G A, JALILOV A S, et al. Suppressing Li metal dendrites through a solid li-ion backup layer[J]. Advanced Materials, 2018, 30(50):doi:https://doi.org/10.1038/s41467-018-02888-8. [36] CHANG W, PARK J H, STEINGART D A. Poor man's atomic layer deposition of LiF for additive-free growth of lithium columns[J]. Nano Letters, 2018, 18(11):7066-7074. [37] FAN X, JI X, HAN F, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Science Advances, 2018, 4(12):doi:10.1126/sciadv.aau9245. [38] LIN D, LIU Y, LI Y, et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nature Chemistry, 2019:https://doi.org/10.1038/s41557-018-0203-8. [39] DIXIT M, REGALA M L, SHEN F, et al. Tortuosity effects in garnet-type Li7La3Zr2O12 solid electrolytes[J]. ACS Applied Materials & Interfaces, 2019, 11(2):2022-2030. [40] ZHOU W, WANG Z, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Advanced Materials (Deerfield Beach, Fla.), 2018, e1805574-e1805574. [41] PHILIP M, SULLIVAN P, ZHANG R, et al. Improving cell resistance and cycle life with solvate-coated thiophosphate solid electrolytes in lithium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(2):2014-2021. [42] XU H, LI Y, ZHOU A, et al. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 degrees C[J]. Nano Letters, 2018, 18(11):7414-7418. [43] LIM H D, YUE X, XING X, et al. Designing solution chemistries for the low-temperature synthesis of sulfide-based solid electrolytes[J]. Journal of Materials Chemistry A, 2018, 6(17):7370-7374. [44] SWAMY T, PARK R, SHELDON B W, et al. Lithium metal penetration induced by electrodeposition through solid electrolytes:Example in single-crystal Li6La3ZrTaO12 garnet[J]. Journal of the Electrochemical Society, 2018, 165(16):A3648-A3655. [45] CALPA M, ROSERO-NAVARRO N C, Miura A, et al. Electrochemical performance of bulk-type all-solid-state batteries using small-sized Li7P3S11 solid electrolyte prepared by liquid phase as the ionic conductor in the composite cathode[J]. Electrochimica Acta, 2019, 296:473-480. [46] CHOI S, ANN J, DO J, et al. Application of rod-like Li6PS5Cl directly synthesized by a liquid phase process to sheet-type electrodes for all-solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2018, 166(3):A5193-A5200. [47] KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP(1-x)Ge(x)S(5)l for all-solid-state batterie[J]s. Journal of the American Chemical Society, 2018, 140(47):16330-16339. [48] DAI H, XI K, LIU X, et al. Cationic surfactant based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms[J]. Journal of the American Chemical Society, 2018, 140(50):17515-17521. [49] YOO D J, YANG S, YUN Y S, et al. Tuning the electron density of aromatic solvent for stable solid-electrolyte-interphase layer in carbonate-based lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(33):https://doi.org/10.1002/aenm.201802365. [50] DOKKO K, WATANABE D, UGATA Y, et al. Direct evidence for li ion hopping conduction in highly concentrated sulfolane-based liquid electrolytes[J]. Journal of Physical Chemistry B, 2018, 122(47):10736-10745. [51] HIEU Q P, LEE H Y, HWANG E H, et al. Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries[J]. Journal of Power Sources, 2018, 404:13-19. [52] QIAO Y, HE Y, JIANG K, et al. High-voltage Li-ion full-cells with ultralong term cycle life at elevated temperature[J]. Advanced Energy Materials, 2018, 8(33):https://doi.org/10.1002/aenm.201802322. [53] XU G, WANG X, LI J, et al. Tracing the impact of hybrid functional additives on a high-voltage (5 V-class) SiOx-C/LiNi0.5Mn1.5O4 Li-ion battery system[J]. Chemistry of Materials, 2018, 30(22):8291-8302. [54] ZHANG F, SHEN F, FAN Z Y, et al. Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode[J]. Rare Metals, 2018, 37(6):510-519. [55] ZHANG G, PENG H J, ZHAO C Z, et al. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2018, 57(51):16732-16736. [56] SUN Y Y, LIU S, HOU Y K, et al. In-situ surface modification to stabilize Ni-rich layered oxide cathode with functional electrolyte[J]. Journal of Power Sources, 2019, 410:115-123. [57] TORNHEIM A, SHARIFI-ASL S, GARCIA J C, et al. Effect of electrolyte composition on rock salt surface degradation in NMC cathodes during high-voltage potentiostatic holds[J]. Nano Energy, 2019, 55:216-225. [58] YUE H, YANG Y, XIAO Y, et al. Boron additive passivated carbonate electrolytes for stable cycling of 5 V lithium-metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(2):594-602. [59] DAI H, XI K, LIU X, et al. Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms[J]. Journal of the American Chemical Society, 2018, 140(50):17515-17521. [60] OUKASSI S, BAGGETTO L, DUBARRY C, et al. Transparent thin film solid-state lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(1):683-690. [61] LI C, LAN Q, YANG Y, et al. A flexible artificial solid electrolyte interphase formed by DOL oxidation and polymerization for metallic lithium anode[J]. ACS Applied Materials & Interfaces, 2018, doi: [62] ALEXANDER G V, ROSERO-NAVARRO N C, MIURA A, et al. Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification[J]. Journal of Materials Chemistry A, 2018, 6(42):21018-21028. [63] PARK C, LEE S, KIM K, et al. Electrochemical properties of composite cathode using bimodal sized electrolyte for all-solid-state batteries[J]. Journal of the Electrochemical Society, 2019, 166(3):A5318-A5322. [64] RIPHAUS N, STROBL P, STIASZNY B, et al. Slurry-based processing of solid electrolytes:A comparative binder study[J]. Journal of the Electrochemical Society, 2018, 165(16):A3993-A3999. [65] DUAN J, WU W, NOLAN A M, et al. Lithium-graphite paste:An interface compatible anode for solid-state batteries[J]. Advanced Materials (Deerfield Beach, Fla.), 2019:e1807243-e1807243. [66] SANG L, BASSETT K L, CASTRO F C, et al. Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface for all-solid-state Li batteries[J]. Chemistry of Materials, 2018, 30(24):8747-8756. [67] LI X, BANIS M, LUSHINGTON A, et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-06877-9. [68] CHANG J, SHANG J, SUN Y, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications, 2018, 9:doi:https://doi.org/10.1038/s41467-018-06879-7. [69] KANG H, KIM H, PARK M J. Sulfur-rich polymers with functional linkers for high-capacity and fast-charging lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(32):doi:https://doi.org/10.1002/aenm.201802423. [70] ZHANG Y, LIU T, ZHANG Q, et al. High-performance all-solid-state lithium-sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode[J]. Journal of Materials Chemistry A, 2018, 6(46):23345-23356. [71] WANG D, ZHANG F, HE P, et al. A versatile halide ester enabling li anode stability and high rate capability of lithium-oxygen batteries[J]. Angewandte Chemie (International ed. in English), 2018:doi:https://doi.org/10.1002/anie.201813009 [72] LEI T, CHEN W, HU Y, et al. A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(32):doi:https://doi.org/10.1002/aenm.201802441. [73] LEI X, LIU X, MA W, et al. Flexible lithium-air battery in ambient air with an insitu formed gel electrolyte[J]. Angewandte Chemie-International Edition, 2018, 57(49):16131-16135. [74] YAO M, WANG R, ZHAO Z, et al. A flexible all-in-one lithium-sulfur battery[J]. ACS Nano, 2018, 12(12):12503-12511. [75] GAO X, SUN Q, YANG X, et al. Toward a remarkable Li-S battery via 3D printing[J]. Nano Energy, 2019, 56:595-603. [76] TAKEUCHI T, KAGEYAMA H, NAKANISHI K, et al. Improvement of cycle capability of Fe-substituted Li2S-based positive electrode materials by doping with lithium iodide[J]. Journal of the Electrochemical Society, 2018, 166(3):A5231-A5236. [77] CHUNG S H, LAI K Y, MANTHIRAM A. A facile, low-cost hot-pressing process for fabricating lithium-sulfur cells with stable dynamic and static electrochemistry[J]. Advanced Materials, 2018, 30(46):doi:https://doi.org/10.1002/adma.201805571. [78] CHUNG S H, MANTHIRAM A. Designing lithium-sulfur batteries with high-loading cathodes at a lean electrolyte condition[J]. ACS Applied Materials & Interfaces, 2018, 10(50):43749-43759. [79] WANG S, FERNANDEZ C, LIU X, et al. The parameter identification method study of the splice equivalent circuit model for the aerial lithium-ion battery pack[J]. Measurement & Control, 2018, 51(5/6):125-137. [80] CHU H, NOH H, KIM Y J, et al. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions[J]. Nature Communications, 2019, 10:https://doi.org/10.1038/s41467-018-07975-4. [81] YANG H, GUO C, CHEN J, et al. An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2019, 58(3):791-795. [82] BESSETTE S, PAOLELLA A, KIM C, et al. Nanoscale lithium quantification in LixNiyCowMnzO2 as cathode for rechargeable batteries[J]. Scientific Reports, 2018, 8:doi:https://doi.org/10.1038/s41598-018-33608-3. [83] PARK S Y, BAEK W J, LEE S Y, et al. Probing electrical degradation of cathode materials for lithium-ion batteries with nanoscale resolution[J]. Nano Energy, 2018, 49:1-6. [84] SCHILLING A, GUEMBEL P, MOELLER M, et al. X-ray based visualization of the electrolyte filling process of lithium ion batteries[J]. Journal of the Electrochemical Society, 2018, 166(3):A5163-A5167. [85] JIN Y, ZHOU L, YU J, et al. In operando plasmonic monitoring of electrochemical evolution of lithium metal[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44):11168-11173. [86] APPIAH W A, PARK J, BYUN S, et al. A coupled chemo-mechanical model to study the effects of adhesive strength on the electrochemical performance of silicon electrodes for advanced lithium ion batteries[J]. Journal of Power Sources, 2018, 407:153-161. [87] NARA H, MUKOYAMA D, SHIMIZU R, et al. Systematic analysis of interfacial resistance between the cathode layer and the current collector in lithium-ion batteries by electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2019, 409:139-147. [88] SHIRAKI S, SHIRASAWA T, SUZUKI T, et al. Atomically well-ordered structure at solid electrolyte and electrode interface reduces the interfacial resistance[J]. ACS Applied Materials & Interfaces, 2018, 10(48):41732-41737. [89] MARZOUK A, PONCE V, BENITEZ L, et al. Unveiling the first nucleation and growth steps of inorganic solid electrolyte interphase components[J]. Journal of Physical Chemistry C, 2018, 122(45):25858-25868. [90] SCHULZ N, HAUSBRAND R, DIMESSO L, et al. XPS-surface analysis of sei layers on li-ion cathodes:part i. investigation of initial surface chemistry[J]. Journal of the Electrochemical Society, 2018, 165(5):A819-A832. [91] ALEMU T, PRADANAWATI S A, CHANG S C, et al. In operando measurements of kinetics of solid electrolyte interphase formation in lithium-ion batteries[J]. Journal of Power Sources, 2018, 400:426-433. [92] HUANG X, ELLISON N. Fabricating a high performance composite separator with a small thickness for lithium ion batteries[J]. Composites Science and Technology, 2018, 168:346-352. [93] CHANG D, OH K, KIM S J, et al. Super-ionic conduction in solid-state Li7P3S11-type sulfide electrolytes[J]. Chemistry of Materials, 2018, 30(24):8764-8770. [94] HUANG W, BOYLE D T, LI Y, et al. Nanostructural and electrochemical evolution of the solid-electrolyte interphase on cuo nanowires revealed by cryogenic electron microscopy and impedance spectroscopy[J]. ACS Nano, 2019, 13(1):737-744. [95] KIM P J, Pol V G. Surface functionalization of a conventional polypropylene separator with an aluminum nitride layer towards ultra-stable and high-rate lithium metal anodes[J]. ACS Applied Materials & Interfaces, 2019, 11(4):3917-3924. [96] ZHANG T, MA Y, HUANG B, et al. Two-dimensional penta-bn2 with high specific capacity for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(6):6104-6110. [97] DAS D, CHANDRASEKARAN A, VENKATRAM S, et al. Effect of crystallinity on Li adsorption in polyethylene oxide[J]. Chemistry of Materials, 2018, 30(24):8804-8810. [98] RIKKA V R, SAHU S R, CHATTERJEE A, et al. In situ/ex situ investigations on the formation of the mosaic solid electrolyte interface layer on graphite anode for lithium-ion batteries[J]. Journal of Physical Chemistry C, 2018, 122(50):28717-28726. [99] LEE H, LIM H S, REN X, et al. Detrimental effects of chemical crossover from the lithium anode to cathode in rechargeable lithium metal batteries[J]. ACS Energy Letters, 2018, 3(12):2921-2930. [100] XIE Y, GAO H, GIM J, et al. Identifying active sites for parasitic reactions at the cathode electrolyte interface[J]. The Journal of Physical Chemistry Letters, 2019, 10(3):589-594. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||