储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3548-3557.doi: 10.19799/j.cnki.2095-4239.2022.0606
出版日期:
2022-11-05
发布日期:
2022-11-09
Fanju MENG1(), Xi ZHANG2, Zhijun QIAO2, Bin YANG3, Miao YU1, Yuzuo WANG2, Dianbo RUAN2()
Online:
2022-11-05
Published:
2022-11-09
Contact:
Dianbo RUAN
E-mail:15110082897@163.com;ruandianbo@nbu.edu.cn
About author:
MENG Fanju (1991—), male, master, research interests: energy storage, E-mail: 15110082897@163.com; Corresponding author:Supported by:
中图分类号:
. [J]. 储能科学与技术, 2022, 11(11): 3548-3557.
Fanju MENG, Xi ZHANG, Zhijun QIAO, Bin YANG, Miao YU, Yuzuo WANG, Dianbo RUAN. Study on the effects of carbon coating on lithium-storage kinetics for soft carbon[J]. Energy Storage Science and Technology, 2022, 11(11): 3548-3557.
1 | NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. |
2 | CHOI S, WANG G X. Advanced lithium-ion batteries for practical applications: Technology, development, and future perspectives[J]. Advanced Materials Technologies, 2018, 3(9): doi: 10.1002/admt.201700376. |
3 | SCHIPPER F, AURBACH D. A brief review: Past, present and future of lithium ion batteries[J]. Russian Journal of Electrochemistry, 2016, 52(12): 1095-1121. |
4 | BABU B, SIMON P, BALDUCCI A. Fast charging materials for high power applications[J]. Advanced Energy Materials, 2020, 10(29): doi: 10.1002/aenm.202001128. |
5 | LIU Y Y, ZHU Y Y, CUI Y. Challenges and opportunities towards fast-charging battery materials[J]. Nature Energy, 2019, 4(7): 540-550. |
6 | AZUMA H, IMOTO H, YAMADA S, et al. Advanced carbon anode materials for lithium ion cells[J]. Journal of Power Sources, 1999, 81/82: 1-7. |
7 | ZHANG S S. Dual-carbon lithium-ion capacitors: Principle, materials, and technologies[J]. Batteries & Supercaps, 2020, 3(11): 1137-1146. |
8 | FANG M D, HO T H, YEN J P, et al. Preparation of advanced carbon anode materials from mesocarbon microbeads for use in high C-rate lithium ion batteries[J]. Materials, 2015, 8(6): 3550-3561. |
9 | JO Y N, PARK M S, LEE E Y, et al. Increasing reversible capacity of soft carbon anode by phosphoric acid treatment[J]. Electrochimica Acta, 2014, 146: 630-637. |
10 | WANG D, ZHOU J S, LI Z P, et al. Uniformly expanded interlayer distance to enhance the rate performance of soft carbon for lithium-ion batteries[J]. Ionics, 2019, 25(4): 1531-1539. |
11 | WANG J, LIU J L, WANG Y G, et al. Pitch modified hard carbons as negative materials for lithium-ion batteries[J]. Electrochimica Acta, 2012, 74: 1-7. |
12 | VELURI P S, KATCHALA N, ANANDAN S, et al. Petroleum coke as an efficient single carbon source for high-energy and high-power lithium-ion capacitors[J]. Energy & Fuels, 2021, 35(10): 9010-9016. |
13 | YUAN S T, HUANG X H, WANG H, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry, 2020, 51: 396-404. |
14 | ALVIN S, CAHYADI H S, HWANG J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials, 2020, 10(20): doi: 10.1002/aenm.202000283. |
15 | YU F D, QUE L F, WANG Z B, et al. Controllable synthesis of hierarchical ball-in-ball hollow microspheres for a high performance layered Li-rich oxide cathode material[J]. Journal of Materials Chemistry A, 2017, 5(19): 9365-9376. |
16 | SHAN X Y, WANG Y Z, WANG D W, et al. Armoring graphene cathodes for high-rate and long-life lithium ion supercapacitors[J]. Advanced Energy Materials, 2016, 6(6): doi: 10.1002/aenm.201502064. |
[1] | 滕久康, 吴宁宁, 王畅, 王庆杰, 石斌. 高容量铬氧化物Cr8O21 锂一次电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(11): 3455-3462. |
[2] | 马康, 高志浩, 骆林, 宋鑫, 戴作强, 何田, 张健敏. 锂硫电池隔膜在不同抑制“穿梭效应”策略中的研究进展[J]. 储能科学与技术, 2022, 11(11): 3521-3533. |
[3] | 刘志聪, 张彦会. 锂离子电池参数辨识及荷电状态的估算[J]. 储能科学与技术, 2022, 11(11): 3613-3622. |
[4] | 王鲁, 王峰, 徐竞, 赵延鹏, 李玮, 王艳艳, 王应彪. 基于SOM+SVM的退役锂离子电池分选[J]. 储能科学与技术, 2022, 11(11): 3623-3630. |
[5] | 朱兆武, 张旭堃, 苏慧, 张健, 王丽娜. 全钒液流电池提高电解液浓度的研究与应用现状[J]. 储能科学与技术, 2022, 11(11): 3439-3446. |
[6] | 王婷, 杨超, 苏红磊, 马维, 井源, 王海龙. 多晶及单晶NMC811材料力学性能分析[J]. 储能科学与技术, 2022, 11(11): 3478-3486. |
[7] | 汪振毅, 张赛, 胡世旺. 锂离子电池电极微结构的分形建模及热-化耦合[J]. 储能科学与技术, 2022, 11(11): 3574-3582. |
[8] | 季洪祥, 武怿达, 金周, 田孟羽, 郝峻丰, 詹元杰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 朱璟, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.08.01—2022.09.30)[J]. 储能科学与技术, 2022, 11(11): 3423-3438. |
[9] | 刘岩, 肖纯, 伍炜, 王雯静, 万昱. 液冷式锂离子电池组可靠性分析及优化设计[J]. 储能科学与技术, 2022, 11(11): 3566-3573. |
[10] | 韦莉, 黄雪林, 张婉婷, 白欣桐. 一种基于少量温度传感器的超级电容模组温度监测方法[J]. 储能科学与技术, 2022, 11(11): 3631-3640. |
[11] | 刘彦奇, 宋兆海, 何田, 戴作强, 郑宗敏. 可充锌空气电池一体化空气电极研究进展[J]. 储能科学与技术, 2022, (): 1-14. |
[12] | 尹建光, 崔相宇, 李方伟, 臧玉魏, 彭飞. 基于自适应协同引导的电池组性能衰退参数辨识[J]. 储能科学与技术, 2022, 11(10): 3345-3353. |
[13] | 罗勇, 周振雨, 申付涛, 黄欢, 邱晓斌, 翁勇永. 考虑参数时变的电池包电热耦合建模[J]. 储能科学与技术, 2022, 11(10): 3180-3190. |
[14] | 李天逸, 焦映厚. 电动客车用七氟丙烷灭火装置最佳热失控抑制参数研究[J]. 储能科学与技术, 2022, 11(10): 3239-3245. |
[15] | 方黎锋. 脂肪族冠醚在电池电解液中的应用[J]. 储能科学与技术, 2022, 11(10): 3100-3111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||