1 |
姚芳, 田家益, 黄凯. 锂电池组健康状态计算方法综述[J]. 电源技术, 2018, 42(1): 135-138.
|
|
YAO F, TIAN J Y, HUANG K. Review of state of health calculation method for lithium battery[J]. Chinese Journal of Power Sources, 2018, 42(1): 135-138.
|
2 |
杨杰, 王婷, 杜春雨, 等. 锂离子电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64.
|
|
YANG J, WANG T, DU C Y, et al. Overview of the modeling of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 58-64.
|
3 |
吴小慧, 张兴敢. 锂电池二阶RC等效电路模型参数辨识[J]. 南京大学学报(自然科学), 2020, 56(5): 754-761.
|
|
WU X H, ZHANG X G. Parameters identification of second order RC equivalent circuit model for lithium batteries[J]. Journal of Nanjing University (Natural Science), 2020, 56(5): 754-761.
|
4 |
林玉珍. 车用锂离子动力电池电化学-热耦合模型及SOC/SOH估计方法研究[D]. 镇江: 江苏大学, 2020.
|
|
LIN Y Z. SOC and SOH estimation of lithium-ion battery based on A coupled electrochemical-thermal model[D]. Zhenjiang: Jiangsu University, 2020.
|
5 |
郑超逸. 基于遗传粒子滤波算法的动力锂电池状态研究[D]. 合肥: 合肥工业大学, 2021.
|
|
ZHENG C Y. Research on the power lithium battery state based on genetic particle filter algorithm[D]. Hefei: Hefei University of Technology, 2021.
|
6 |
张立强. 锂离子电池多物理模型参数辨识及健康特征提取[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
|
ZHANG L Q. Parameter identification of the multi-physics model and health feature extraction for lithium-ion battery[D]. Harbin: Harbin Institute of Technology, 2015.
|
7 |
李放, 闵永军, 张涌. 基于大数据的动力锂电池可靠性关键技术研究综述[J]. 储能科学与技术, 2023, 12(6): 1981-1994.
|
|
LI F, MIN Y J, ZHANG Y. Review of key technology research on the reliability of power lithium batteries based on big data[J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994.
|
8 |
何浩然, 丁稳房, 吴铁洲, 等. 基于IGA-BP神经网络的锂电池健康状态估算[J]. 电源技术, 2022, 46(1): 78-82.
|
|
HE H R, DING W F, WU T Z, et al. SOH estimation of lithium battery based on IGA-BP neural network[J]. Chinese Journal of Power Sources, 2022, 46(1): 78-82.
|
9 |
HU C, YOUN B D, WANG P F, et al. Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[J]. Reliability Engineering & System Safety, 2012, 103: 120-135.
|
10 |
刘伟霞, 田勋, 肖家勇, 等. 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689-694.
|
|
LIU W X, TIAN X, XIAO J Y, et al. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory[J]. Energy Storage Science and Technology, 2021, 10(2): 689-694.
|
11 |
王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245.
|
|
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245.
|
12 |
周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111, 325.
|
|
ZHOU D, SONG X H, LU W B, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111, 325.
|
13 |
王巍. 基于稀疏高斯过程回归的锂电池剩余寿命预测[D]. 北京: 北京交通大学, 2018.
|
|
WANG W. Remaining useful life prediction for lithium-ion battery based on sparse Gaussian process regression[D]. Beijing: Beijing Jiaotong University, 2018.
|
14 |
廖力, 肖廷奕, 吴铁洲, 等. 基于多健康特征融合的锂电池SOH和RUL预测[J]. 电源技术, 2023, 47(2): 193-198.
|
|
LIAO L, XIAO T Y, WU T Z, et al. SOH and RUL prediction for lithium batteries based on fusion of multiple health features[J]. Chinese Journal of Power Sources, 2023, 47(2): 193-198.
|
15 |
王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1534.
|
|
WANG P, FAN L F, CHENG Z. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1534.
|
16 |
ZHENG L F, ZHU J G, LU D D C, et al. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J]. Energy, 2018, 150: 759-769.
|
17 |
周才杰, 汪玉洁, 李凯铨, 等. 基于灰色关联度分析-长短期记忆神经网络的锂离子电池健康状态估计[J]. 电工技术学报, 2022, 37(23): 6065-6073.
|
|
ZHOU C J, WANG Y J, LI K Q, et al. State of health estimation for lithium-ion battery based on gray correlation analysis and long short-term memory neural network[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6065-6073.
|
18 |
孙广明, 贾新羽, 陈良亮. 基于K近邻回归的锂离子电池健康状态估计[J]. 电源技术, 2022, 46(8): 872-875.
|
|
SUN G M, JIA X Y, CHEN L L. State of health estimation of lithium-ion battery based on K nearest neighbour regression and IC curve[J]. Chinese Journal of Power Sources, 2022, 46(8): 872-875.
|
19 |
LI A, PELISSIER S, VENET P, et al. Fast characterization method for modeling battery relaxation voltage[J]. Batteries, 2016, 2(2): 7.
|
20 |
ZHU J G, WANG Y X, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13: 2261.
|
21 |
FANG Q H, WEI X Z, LU T Y, et al. A state of health estimation method for lithium-ion batteries based on voltage relaxation model[J]. Energies, 2019, 12(7): 1349.
|
22 |
郑伟博, 张纪会. 基于Nelder-Mead单纯形法的改进量子行为粒子群算法[J]. 复杂系统与复杂性科学, 2016, 13(2): 97-104.
|
|
ZHENG W B, ZHANG J H. A improved quantum behaved particle swarm optimization algorithm using nelder and mead's simplex algorithm[J]. Complex Systems and Complexity Science, 2016, 13(2): 97-104.
|