| 1 | 
																						 
											 王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333.
											 											 | 
										
																													
																						 | 
																						 
											 WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333.
											 											 | 
										
																													
																						| 2 | 
																						 
											 戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649.
											 											 | 
										
																													
																						 | 
																						 
											 DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649.
											 											 | 
										
																													
																						| 3 | 
																						 
											 ZHANG Y B, WANG Y Y, XIA Y, et al. A deep learning approach to estimate the state of health of lithium-ion batteries under varied and incomplete working conditions[J]. Journal of Energy Storage, 2023, 58: 106323.
											 											 | 
										
																													
																						| 4 | 
																						 
											 熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018.
											 											 | 
										
																													
																						 | 
																						 
											 XIONG R. Core algorithm of battery management system for EVs[M]. Beijing: China Machine Press, 2018.
											 											 | 
										
																													
																						| 5 | 
																						 
											 崔显, 陈自强. 基于ECM和SGPR的高鲁棒性锂离子电池健康状态估计方法[J/OL].上海交通大学学报, 2023, 1-23.
											 											 | 
										
																													
																						 | 
																						 
											 CUI X, CHEN Z Q. A highly robust state of health estimation method of lithium-ion battery based on ECM and SGPR[J/OL]. Journal of Shanghai Jiaotong University, 2023, 1-23.
											 											 | 
										
																													
																						| 6 | 
																						 
											 SANKARASUBRAMANIAN S, KRISHNAMURTHY B. A capacity fade model for lithium-ion batteries including diffusion and kinetics[J]. Electrochimica Acta, 2012, 70: 248-254.
											 											 | 
										
																													
																						| 7 | 
																						 
											 CHEN Z, SUN M M, SHU X, et al. On-board state of health estimation for lithium-ion batteries based on random forest[C]//2018 IEEE International Conference on Industrial Technology (ICIT). February 20-22, 2018, Lyon, France. IEEE, 2018: 1754-1759.
											 											 | 
										
																													
																						| 8 | 
																						 
											 LI R, LI W R, ZHANG H N, et al. On-line estimation method of lithium-ion battery health status based on PSO-SVM[J]. Frontiers in Energy Research, 2021, 9: 693249.
											 											 | 
										
																													
																						| 9 | 
																						 
											 LIN M Q, YAN C H, MENG J H, et al. Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression[J]. Energy, 2022, 250: 123829.
											 											 | 
										
																													
																						| 10 | 
																						 
											 KHUMPROM P, YODO N. A data-driven predictive prognostic model for lithium-ion batteries based on a deep learning algorithm[J]. Energies, 2019, 12(4): 660.
											 											 | 
										
																													
																						| 11 | 
																						 
											 HAN T, WANG Z, MENG H X. End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation[J]. Journal of Power Sources, 2022, 520: 230823.
											 											 | 
										
																													
																						| 12 | 
																						 
											 LEE P Y, KWON S, KANG D, et al. Principle component analysis-based optimized feature extraction merged with nonlinear regression model for improved state-of-health prediction[J]. Journal of Energy Storage, 2022, 48: 104026.
											 											 | 
										
																													
																						| 13 | 
																						 
											 MA Y, SHAN C, GAO J W, et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J]. Energy, 2022, 251: 123973.
											 											 | 
										
																													
																						| 14 | 
																						 
											 CHEN Z, ZHAO H Q, ZHANG Y J, et al. State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network[J]. Journal of Power Sources, 2022, 521: 230892.
											 											 | 
										
																													
																						| 15 | 
																						 
											 刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246.
											 											 | 
										
																													
																						 | 
																						 
											 LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246.
											 											 | 
										
																													
																						| 16 | 
																						 
											 FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101741.
											 											 | 
										
																													
																						| 17 | 
																						 
											 SUN H L, YANG D F, DU J X, et al. Prediction of Li-ion battery state of health based on data-driven algorithm[J]. Energy Reports, 2022, 8: 442-449.
											 											 | 
										
																													
																						| 18 | 
																						 
											 CHEN J X, FENG X, JIANG L, et al. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network[J]. Energy, 2021, 227: 120451.
											 											 | 
										
																													
																						| 19 | 
																						 
											 CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014.
											 											 | 
										
																													
																						| 20 | 
																						 
											 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[EB/OL]. 2017[2023-03-12]. https://arxiv.org/abs/1706. 03762.pdf.
											 											 | 
										
																													
																						| 21 | 
																						 
											 YUAN F N, ZHANG Z X, FANG Z J. An effective CNN and Transformer complementary network for medical image segmentation[J]. Pattern Recognition, 2023, 136: 109228.
											 											 | 
										
																													
																						| 22 | 
																						 
											 CALCE Battery Data, https://web.calce.umd.edu/batteries/data.htm
											 											 | 
										
																													
																						| 23 | 
																						 
											 BAO L N, LE D N, NGUYEN G N, et al. Optimizing feature selection in video-based recognition using Max-Min Ant System for the online video contextual advertisement user-oriented system[J]. Journal of Computational Science, 2017, 21: 361-370.
											 											 |