[1] |
成林. 加快我国新型储能发展的思考[J]. 能源研究与管理, 2023(2): 148-152, 159. DOI: 10.16056/j.2096-7705.2023.02.022.
|
|
CHENG L. Thoughts on accelerating the development of new energy storage in China[J]. Energy Research and Management, 2023(2): 148-152, 159. DOI: 10.16056/j.2096-7705.2023.02.022.
|
[2] |
陈海生. "双碳" 目标下的储能发展[J]. 中国电力企业管理, 2021(22): 23-24.
|
|
CHEN H S. Energy storage development under the goal of "double carbon" [J]. China Power Enterprise Management, 2021(22): 23-24.
|
[3] |
陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki.2095-4239.2022.0105.
|
|
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki. 2095-4239.2022.0105.
|
[4] |
郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199.
|
|
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199.
|
[5] |
李阳海, 梅欣, 徐万兵, 等. 采用不同工质的压缩气体储能系统热力性能对比分析[J]. 动力工程学报, 2023, 43(2): 269-274. DOI: 10. 19805/j.cnki.jcspe.2023.02.019.
|
|
LI Y H, MEI X, XU W B, et al. Comparative analysis of thermal performance of compressed gas energy storage systems using different working fluids[J]. Journal of Chinese Society of Power Engineering, 2023, 43(2): 269-274. DOI: 10.19805/j.cnki.jcspe. 2023.02.019.
|
[6] |
吴思成. 压缩CO2储能的系统分析及实验验证[D]. 天津: 天津商业大学, 2019.
|
[7] |
郑平洋, 郝佳豪, 常鸿, 等. 基于不同液化方式的液态二氧化碳储能系统研究进展[J]. 南方能源建设, 2024, 11(2): 102-111. DOI: 10.16516/j.ceec.2024.2.10.
|
|
ZHENG P Y, HAO J H, CHANG H, et al. Research progress of liquid carbon dioxide energy storage system based on different liquefaction methods[J]. Southern Energy Construction, 2024, 11(2): 102-111. DOI: 10.16516/j.ceec.2024.2.10.
|
[8] |
刘辉. 超临界压缩二氧化碳储能系统热力学特性与热经济性研究[D]. 北京: 华北电力大学, 2017. DOI: 10.27140/d.cnki.ghbbu. 2017. 000045.
|
|
LIU H. Research on thermodynamic and thermoeconomic properties of super-critical compressed carbon dioxide energy storage[D]. Beijing: North China Electric Power University, 2017. DOI: 10.27140/d.cnki.ghbbu.2017.000045.
|
[9] |
DEWEVRE F, LACROIX C, LOUBAR K, et al. Carbon dioxide energy storage systems: Current researches and perspectives[J]. Renewable Energy, 2024, 224: 120030. DOI: 10.1016/j.renene. 2024.120030.
|
[10] |
王鼎, 刘仕桢, 施东波, 等. 新型气液相变压缩二氧化碳储能系统性能分析[J]. 动力工程学报, 2024, 44(3): 339-347. DOI: 10.19805/j.cnki.jcspe.2024.230648.
|
|
WANG D, LIU S Z, SHI D B, et al. Performance analysis of a novel compressed carbon dioxide energy storage system based on gas-liquid phase change[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 339-347. DOI: 10.19805/j.cnki.jcspe.2024.230648.
|
[11] |
FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247: 114757. DOI: 10.1016/j.enconman.2021.114757.
|
[12] |
郝银萍. 跨临界压缩二氧化碳储能系统热力学特性及技术经济性研究[D]. 北京: 华北电力大学, 2021. DOI: 10.27140/d.cnki.ghbbu. 2021.000057.
|
|
HAO Y P. Research on thermodynamic and techno-economic properties of trans-critical compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2021. DOI: 10.27140/d.cnki.ghbbu.2021.000057.
|
[13] |
XU M J, ZHAO P, HUO Y W, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system[J]. Journal of Cleaner Production, 2020, 242: 118437. DOI: 10.1016/j.jclepro. 2019.118437.
|
[14] |
CHEN K Q, PU W H, ZHANG Q, et al. Thermodynamic and economic assessment on the supercritical compressed carbon dioxide energy storage system coupled with solar thermal storage[J]. Journal of Energy Storage, 2021, 41: 102959. DOI: 10.1016/j.est.2021.102959.
|
[15] |
严晓生, 王小东, 韩旭, 等. 液态压缩二氧化碳储能与火电机组耦合方案研究[J]. 热力发电, 2023, 52(2): 90-100. DOI: 10.19666/j.rlfd. 202205122.
|
|
YAN X S, WANG X D, HAN X, et al. Study on coupling scheme of liquid compressed carbon dioxide energy storage system and thermal power unit[J]. Thermal Power Generation, 2023, 52(2): 90-100. DOI: 10.19666/j.rlfd.202205122.
|
[16] |
杨尔辅, 胡益锋, 周强, 等. 乙烯生产过程建模及控制和优化技术综述[J]. 石油化工自动化, 2002, 38(2): 1-6, 11. DOI: 10.3969/j.issn. 1007-7324.2002.02.001.
|
|
YANG E F, HU Y F, ZHOU Q, et al. Survey on modeling, control and optimization techniques for ethylene process[J]. Automation in Petro-Chemical Industry, 2002, 38(2): 1-6, 11. DOI: 10.3969/j.issn.1007-7324.2002.02.001.
|
[17] |
王松汉, 何细藕. 乙烯工艺与技术[M]. 北京: 中国石化出版社, 2000.WANG S H, HE X O. Ethylene process and technology[M]. Beijing: China Petrochemical Press, 2000.
|
[18] |
李春梅. 乙烯装置急冷系统优化节能改造[J]. 炼油与化工, 2024, 35(4): 61-66. DOI: 10.16049/j.cnki.lyyhg.2024.04.013.
|
|
LI C M. Optimization and energy-saving renovation of quench cooling system of ethylene plant[J]. Refining and Chemical Industry, 2024, 35(4): 61-66. DOI: 10.16049/j.cnki.lyyhg. 2024. 04.013.
|
[19] |
顾发. 梯级泵站优化模型及参数敏感性分析[J]. 陕西水利, 2023(8): 164-166. DOI: 10.16747/j.cnki.cn61-1109/tv.2023.08.061.
|
|
GU F. Optimization model and parameter sensitivity analysis of cascade pumping stations[J]. Shaanxi Water Resources, 2023(8): 164-166. DOI: 10.16747/j.cnki.cn61-1109/tv.2023.08.061.
|
[20] |
ASTOLFI M, RIZZI D, MACCHI E, et al. A novel energy storage system based on carbon dioxide unique thermodynamic properties[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(8): 081012. DOI: 10.1115/1.4054750.
|