储能科学与技术

• 储能科学与技术 •    

过充和加热滥用下大容量磷酸铁锂电池热失控特性实验研究

杨帆1(), 李煌1, 李志远1, 李宇轩1, 姜丽华2, 王成东1, 王青松1, 段强领1()   

  1. 1.中国科学技术大学火灾安全全国重点实验室,安徽 合肥 230026
    2.山东科技大学安全与环境工程学院,山东 泰安 271299
  • 收稿日期:2025-06-10 修回日期:2025-08-09
  • 通讯作者: 段强领 E-mail:yf6@mail.ustc.edu.cn;duanql@ustc.edu.cn
  • 作者简介:杨帆(1994—),男,硕士,研究方向:电池安全,E-mail:yf6@mail.ustc.edu.cn
  • 基金资助:

Experimental Study on Thermal Runaway Characteristics of Large-Capacity Lithium Iron Phosphate Batteries under Overcharging and Heating Abuse

Fan Yang1(), Huang Li1, Zhiyuan Li1, Yuxuan Li1, Lihua Jiang2, Chengdong Wang1, Qingsong Wang1, Qiangling Duan1()   

  1. 1.State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026 China
    2.School of Safety and Environmental Engineering, Shandong University of Science and Technology, Taian, Shandong 271299 China
  • Received:2025-06-10 Revised:2025-08-09
  • Contact: Qiangling Duan E-mail:yf6@mail.ustc.edu.cn;duanql@ustc.edu.cn

摘要:

磷酸铁锂电池凭借高稳定性和长循环寿命,在电化学储能领域占据重要地位。尽管其在储能领域得到广泛应用,但大容量化使热失控风险呈指数级提升,仍需对其热失控特性开展更多的研究以提供数据支持。本研究以280 Ah商用磷酸铁锂方形叠片电池为对象,在100%荷电状态(SOC)下,通过设计阶梯式过充倍率(0.5 C、0.75 C、1.0 C)与加热功率(0.5 kW、0.75 kW、1.0 kW)实验方案,系统探究过充与加热滥用触发条件下电池热失控行为差异。结果表明:随着过充倍率和加热功率增加,电池热失控均表现出触发时间缩短,最高温度升高的特性。两类触发条件下,电池内部反应越剧烈,排气温度越高。电池表面温度攀升均滞后于内部反应,温度峰值出现在热失控后期,实验通过监测电池表面温度、射流温度、电压、质量变化等关键参数,构建多参数雷达图简化评估模型。结果显示,高倍率过充电池热失控过程的热危害水平相近但质量损失较少,高功率加热电池热失控过程的热危害与质量损失均显著增加。该研究为提升磷酸铁锂电池在大规模储能中的安全性提供了基础数据,并为相关领域安全发展提供理论支持。

关键词: 磷酸铁锂电池, 热失控特性, 触发方式, 危害评估

Abstract:

Lithium iron phosphate (LFP) batteries have gained a pivotal position in electrochemical energy storage due to their high stability and long cycle life. Despite their widespread application in energy storage systems owing to superior thermal stability, the escalation of capacity has led to an exponential increase in the risk of thermal runaway. Thus, further in-depth studies on their thermal runaway characteristics are still required to provide sufficient data support. This study systematically investigates the thermal runaway behaviors of 280 Ah commercial prismatic laminated LFP batteries at 100% state of charge (SOC) under stepped overcharging rates (0.5 C, 0.75 C, 1.0 C) and heating powers (0.5 kW, 0.75 kW, 1.0 kW). Key parameters including battery surface temperature, jet temperature, voltage, and mass change were monitored to analyze the differences in thermal runaway triggered by overcharging and heating abuse.The results show that increasing both the overcharging rate and heating power shortens the thermal runaway triggering time and elevates the maximum temperature. Under both triggering conditions, more intense internal reactions in the battery result in higher exhaust temperatures. The rise in battery surface temperature lags behind the internal reactions, with the temperature peak occurring in the late stage of thermal runaway.A multi-parameter radar chart-based simplified evaluation model for thermal runaway was constructed. The results indicate that high-rate overcharging leads to similar levels of thermal hazards but less mass loss during the thermal runaway process, while high-power heating significantly increases both thermal hazards and mass loss. This research provides fundamental data for enhancing the safety of LFP batteries in large-scale energy storage and offers theoretical support for the safe development of related fields.

Key words: Lithium iron phosphate battery, Thermal runaway characteristics, Triggering method, Hazard assessment

中图分类号: