储能科学与技术

• •    

基于超参数优化和混合神经网络的锂硫电池健康状态估计

时洪雷1(), 刘喜军2, 高竟译3, 苏志伟4, 宫羽5, 王凯4()   

  1. 1.中车青岛四方车辆研究所有限公司,山东 青岛 266031
    2.胜利石油管理局有限公司,山东 东营 257055
    3.国网内蒙古东部电力有限公司赤峰供电公司,内蒙古 赤峰 024000
    4.青岛大学电气工程学院,山东 青岛 266071
    5.英国伯明翰大学,英国 伯明翰 B15 2TT
  • 收稿日期:2025-07-07 修回日期:2025-09-05
  • 通讯作者: 王凯 E-mail:shihl2013@163.com;wkwj888@163.com
  • 作者简介:时洪雷 (1990- ) 男 ,硕士,工程师,储能系统集成及应用,E-mail: shihl2013@163.com
  • 基金资助:
    中央引导地方科技发展资金项目(YDZX2024060);2025年第一批山东省海洋服务业重点项目

State of Health Estimation of Lithium-Sulfur Batteries Based on Hyperparameter Optimization and Hybrid Neural Networks

HongLei SHI1(), Xijun LIU2, JingYi GAO3, ZhiWei SU4, Yu GONG5, Kai WANG4()   

  1. 1.CRRC Qingdao Sifang Rolling Stock Research Institute Co. , Ltd. , Qingdao 260000, Shandong
    2.Sinopec Shengli Petroleum Administrative Bureau Co. , Ltd. , Dongying 257055, Shandong
    3.Chifeng Power Supply Company, State Grid Inner Mongolia East Electric Power Co. , Ltd. , Chifeng 024000, Inner Mongolia
    4.School of Electrical Engineering, Qingdao University, Qingdao 266071, Shandong
    5.University of Birmingham, Birmingham B15 2TT, United Kingdom
  • Received:2025-07-07 Revised:2025-09-05
  • Contact: Kai WANG E-mail:shihl2013@163.com;wkwj888@163.com

摘要:

锂硫(Li-S)电池以其高比容量、高能量密度、环保友好等优点得到了广泛的应用,其中健康状态(State of health,SOH)是设计安全可靠的电池管理系统(Battery management systems,BMS)的关键参数。然而,由于Li-S电池内部电化学性质的复杂性和外部工作环境的不确定性,实现准确的SOH估算是一个很大的挑战。在本研究中,我们提出了一种新的基于超参数优化和CNN-Bi-LSTM混合神经网络的SOH估计框架,该框架无需复杂的人工预处理步骤即可从原始传感器数据中提取空间特征和通道特征,然后使用双向长短期记忆神经网络与自注意力机制进行数据拟合。本文在实验室自主搭建的Li-S电池测试平台上对四块不同容量、不同结构的电池进行了实验,当采用不同比例的训练数据集,SOH估计结果的最大RMSE不超过0.57%,MAE不超过0.39%,证明所提出方法的精度较高,鲁棒性较强。

关键词: 锂硫电池, 健康状态估计, 混合神经网络, 超参数优化

Abstract:

Lithium-sulfur (Li-S) batteries have been widely used due to their high specific capacity, high energy density, and environmental friendliness, among which state of health (SOH) is the key parameter for designing safe and reliable battery management systems (BMS). However, due to the complexity of the internal electrochemical properties of Li-S cells and the uncertainty of the external operating environment, achieving accurate SOH estimation is a big challenge. In this study, we proposea novel SOH estimation framework based on hyperparameter optimization and CNN-Bi-LSTM hybrid neural networks, which can extract spatial features and channel features from raw sensor data without complex manual preprocessing steps, and then use bidirectional long short-term memory neural network with self-attention mechanism for data fitting. In this paper, experiments are carried out on four batteries with different capacities and different structures on the Li-S battery test platform built by the laboratory, and when different proportions of training datasets are used, the maximum RMSE of the SOH estimation results is not more than 0.57%, and the MAE is not more than 0.39%, which proves that the proposed method has high accuracy and robustness.

Key words: Lithium-sulfur battery, state of health estimation, hybrid neural networks, hyperparameter optimization

中图分类号: