[1] |
王萍, 弓清瑞, 张吉昂, 等. 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36(24):5201-5212. DOI:10.19595/j.cnki.1000-6753.tces.210385.
|
[2] |
闫正义, 赵康, 王凯. 基于强化学习的新型电力系统优化策略应用综述[J]. 发电技术, 2025, 46(03):508-520.
|
[3] |
逯云杰. 电力汽车储能系统控制技术研究[J]. 储能科学与技术, 2024, 13(02):608-610. DOI:10.19799/j.cnki.2095-4239.2024.0013.
|
[4] |
Bi J, Lee J-C, Liu H. Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics[J]. Energies. 2022, 15(7): 2448.
|
[5] |
尹杰, 刘博, 孙国兵, 等. 基于迁移学习和DAE-LSTM的锂离子电池剩余寿命预测[J/OL]. 电工技术学报, 1-14[2025-08-17]. https://doi.org/10.19595/j.cnki.1000-6753.tces.221890.
|
[6] |
赵康, 闫正义, 王凯. 光纤传感技术在电池荷电状态/健康状态监测中的研究进展[J/OL]. 发电技术, 1-12[2025-08-17].https://link.cnki.net/urlid/33.1405.TK.20250311.0955.002.
|
[7] |
Zhang YX, Cao YD, Fan LL, et al. Structure-defined viologen-polyoxometalate modified separator dominating endurable Li-S batteries by a synergistic adsorption-electrocatalysis mechanism[J]. CHEMICAL ENGINEERING JOURNAL. 2024, 482.
|
[8] |
Jiao C, Zhao CR, Zhang L, et al. Electrochemical properties of high-loading sulfur-carbon materials prepared by in situ generation method[J]. RARE METALS. 2023, 42(11): 3877-3885.
|
[9] |
张效伟, 衣振晓, 王凯. 基于改进自适应蜜獾优化算法优化时间卷积网络的车载锂离子电池健康状态估计[J/OL]. 发电技术, 1-13[2025-08-17]. https://link.cnki.net/urlid/33.1405.TK.20240719.1509.002.
|
[10] |
史宏思, 孙新伟, 王凯. 基于电化学阻抗谱的锂离子电池健康状态估计[J/OL]. 发电技术, 1-15[2025-08-17]. https://link.cnki.net/urlid/33.1405.tk.20240716.1502.008.
|
[11] |
Soni R, Hu J, Robinson JB, et al. Predicting cell failure and performance decline in lithium-sulfur batteries using distribution of relaxation times analysis [J]. CELL REPORTS PHYSICAL SCIENCE. 2024, 5(2).
|
[12] |
Hua X, Zhang T, Offer GJ, et al. Towards online tracking of the shuttle effect in lithium sulfur batteries using differential thermal voltammetry [J]. JOURNAL OF ENERGY STORAGE. 2019, 21: 765-772.
|
[13] |
李鹏举, 陈晓宇, 谢佳, 等. 锂离子电池功率状态预测方法研究进展[J/OL]. 储能科学与技术, 1-8[2025-08-17].https://doi.org/10.19799/j.cnki.2095-4239.2025.0549.
|
[14] |
李英顺, 阚宏达, 郭占男, 等. 基于数据预处理和VMD-LSTM-GPR的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(10):3244-3258. DOI:10.19595/j.cnki.1000-6753.tces.230210.
|
[15] |
姜寒, 王凯. 面向变电站无人化巡检的多源融合即时定位与建图方法综述[J]. 广东电力, 2025, 38(03): 55-68.
|
[16] |
Cui ZH, Kang L, Li LW, et al. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF[J]. Energy. 2022, 259: 124933.
|
[17] |
Gao J, Yang D, Wang S, et al. State of health estimation of lithium-ion batteries based on Mixers-bidirectional temporal convolutional neural network[J]. Journal of Energy Storage. 2023, 73: 109248.
|
[18] |
尚玉朝, 刘春豪, 王凯. 基于融合优化算法的超级电容器健康状态预测模型[J/OL]. 发电技术, 1-11[2025-08-17].https://link.cnki.net/urlid/33.1405.TK.20250117.1141.002.
|
[19] |
陈媛, 章思源, 蔡宇晶, 等. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(09):2995-3005. DOI:10.19799/j.cnki.2095-4239.2024.0465.
|
[20] |
张朝龙, 陈阳, 刘梦玲, 等. 一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2025, 14(03):1258-1269. DOI:10.19799/j.cnki.2095-4239.2024.1124.
|