1 |
CHEN Y, WANG T Y, TIAN H J, et al. Advances in lithium-sulfur batteries: From academic research to commercial viability[J]. Advanced Materials, 2021, 33(29): 2003666. DOI: 10.1002/adma.202003666.
|
2 |
TOMER V K, MALIK R, TJONG J, et al. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery[J]. Coordination Chemistry Reviews, 2023, 481: 215055. DOI: 10.1016/j.ccr.2023.215055.
|
3 |
LIU Y T, LIU S, LI G R, et al. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Advanced Materials, 2021, 33(8): 2003955. DOI: 10.1002/adma.202003955.
|
4 |
LEI J, LIU T, CHEN J J, et al. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries[J]. Chem, 2020, 6(10): 2533-2557. DOI: 10.1016/j.chempr.2020. 06.032.
|
5 |
WANG P, XI B J, HUANG M, et al. Emerging catalysts to promote kinetics of lithium-sulfur batteries[J]. Advanced Energy Materials, 2021, 11(7): 2002893. DOI: 10.1002/aenm.202002893.
|
6 |
徐桂培, 刘浩, 赖洁文, 等. 干法电极技术在超级电容器和锂离子电池中的研究进展[J/OL]. 储能科学与技术, 1-15[2025-01-12]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0997.
|
|
XU G P, LIU H, LAI J W, et al. Research progress of solvent-free electrode technology for supercapacitor and lithium-ion battery[J]. Energy Storage Science and Technology, 1-15[2025-01-12]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0997.
|
7 |
DENG Q, DONG X J, SHEN P K, et al. Li-S chemistry of manganese phosphides nanoparticles with optimized phase[J]. Advanced Science, 2023, 10(9): 2207470. DOI: 10.1002/advs. 202207470.
|
8 |
XIANG Y Y, LU L Q, KOTTAPALLI A G P, et al. Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium-sulfur batteries[J]. Carbon Energy, 2022, 4(3): 346-398. DOI: 10.1002/cey2.185.
|
9 |
LI S S, JIN B, ZHAI X J, et al. Review of carbon materials for lithium-sulfur batteries[J]. ChemistrySelect, 2018, 3(8): 2245-2260. DOI: 10.1002/slct.201703112.
|
10 |
LI J B, QU Y R, CHEN C Y, et al. Theoretical investigation on lithium polysulfide adsorption and conversion for high-performance Li-S batteries[J]. Nanoscale, 2021, 13(1): 15-35. DOI: 10.1039/d0nr06732f.
|
11 |
LI B, LIU Y. Physical and chemical adsorption of polysulfides[J]. Advances in Rechargeable Lithium-Sulfur Batteries, 2022: DOI: 10.1007/978-3-030-90899-7_4.
|
12 |
LIN Q W, LIANG J X, FANG R P, et al. A lewis acid-lewis base hybridized electrocatalyst for roundtrip sulfur conversion in lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(21): 2400786. DOI: 10.1002/aenm.202400786.
|
13 |
申菲. 锂离子电池安全性及预警措施研究[J]. 储能科学与技术, 2024, 13(10): 3515-3517. DOI: 10.19799/j.cnki.2095-4239. 2024. 0929.
|
|
SHEN F. Research on the safety and early warning measures of the lithium-ion battery[J]. Energy Storage Science and Technology, 2024, 13(10): 3515-3517. DOI: 10.19799/j.cnki.2095-4239.2024. 0929.
|
14 |
GENG P B, DU M, GUO X T, et al. Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium-sulfur batteries[J]. Energy & Environmental Materials, 2022, 5(2): 599-607. DOI: 10.1002/eem 2.12196.
|
15 |
NAI J W, LOU X W. Hollow structures based on Prussian blue and its analogs for electrochemical energy storage and conversion[J]. Advanced Materials, 2019, 31(38): 1706825. DOI: 10.1002/adma.201706825.
|
16 |
DU G Y, PANG H. Recent advancements in Prussian blue analogues: Preparation and application in batteries[J]. Energy Storage Materials, 2021, 36: 387-408. DOI: 10.1016/j.ensm. 2021.01.006.
|
17 |
WANG P F, SUN S H, BAI G S, et al. Nanosized Prussian blue and its analogs for bioimaging and cancer theranostics[J]. Acta Biomaterialia, 2024, 176: 77-98. DOI: 10.1016/j.actbio.2023. 12.047.
|
18 |
CHEN M H, ZHANG Z P, LIU X X, et al. Prussian blue coated with reduced graphene oxide as high-performance cathode for lithium-sulfur batteries[J]. RSC Advances, 2020, 10(53): 31773-31779. DOI: 10.1039/D0RA04901H.
|
19 |
DU M, WANG X Y, GENG P B, et al. Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: High-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 420: 130518. DOI: 10.1016/j.cej.2021.130518.
|
20 |
ZHANG G X, LI Y L, XIAO X, et al. In situ anchoring polymetallic phosphide nanoparticles within porous Prussian blue analogue nanocages for boosting oxygen evolution catalysis[J]. Nano Letters, 2021, 21(7): 3016-3025. DOI: 10.1021/acs.nanolett.1c00179.
|
21 |
NAI J W, LU Y, YU L, et al. Formation of Ni-Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst[J]. Advanced Materials, 2017, 29(41): 1703870. DOI: 10.1002/adma.201703870.
|
22 |
XU H, ZHAO X, YU C Y, et al. Mechanistic insight in site-selective and anisotropic etching of Prussian blue analogues toward designable complex architectures for efficient energy storage[J]. Nanoscale, 2020, 12(20): 11112-11118. DOI: 10.1039/d0nr022 41a.
|
23 |
HAN L, YU X Y, LOU X W. Formation of Prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-co-mixed oxide for enhanced oxygen evolution[J]. Advanced Materials, 2016, 28(23): 4601-4605. DOI: 10.1002/adma.2015 06315.
|
24 |
WANG P F, DAI X, XU P, et al. Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li-S batteries[J]. eScience, 2023, 3(1): 100088. DOI: 10.1016/j.esci.2022.100088.
|
25 |
DUAN D H, XING C Z, CHEN K X, et al. Design of CoP-CoO heterostructure to enhance the polysulfide redox conversion for lithium-sulfur batteries[J]. Journal of Electroanalytical Chemistry, 2022, 920: 116644. DOI: 10.1016/j.jelechem.2022.116644.
|
26 |
SUN L S, BAO X L, LI Y M, et al. CoS2 and FeS2 nanoparticles embedded in carbon polyhedrons for lithium-sulfur batteries[J]. ACS Applied Nano Materials, 2023, 6(13): 11095-11103. DOI: 10.1021/acsanm.3c00777.
|
27 |
CAI Y, JIN Q, ZHAO K X, et al. Mitigating side reaction for high capacity retention in lithium-sulfur batteries[J]. Chinese Chemical Letters, 2022, 33(1): 457-461. DOI: 10.1016/j.cclet.2021.05.065.
|
28 |
LI H L, WANG X F, QI C, et al. Self-assembly of MoO3-decorated carbon nanofiber interlayers for high-performance lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics, 2020, 22(4): 2157-2163. DOI: 10.1039/C9CP06287D.
|
29 |
WANG F Z, HAN Y Y, XU R, et al. Establishing transition metal phosphides as effective sulfur hosts in lithium-sulfur batteries through the triple effect of "confinement-adsorption-catalysis"[J]. Small, 2023, 19(42): 2303599. DOI: 10.1002/smll.202303599.
|
30 |
FEI J Y, WANG Y J, LI S Q, et al. Preparation of CoO-CoP-CNT heterogeneous materials for advanced lithium-sulfur battery cathode electrode[J]. Journal of Alloys and Compounds, 2023, 966: 171551. DOI: 10.1016/j.jallcom.2023.171551.
|