• XXXX •
贾文林1,2(), 张尊华1,2(
), 周梦妮2, 张帆2,3, 欧阳章智3
收稿日期:
2025-07-07
修回日期:
2025-09-02
通讯作者:
张尊华
E-mail:jwl19951029@163.com;zunhuazhang@whut.edu.cn
作者简介:
贾文林(1997—),男,博士在读,新型储能技术,jwl19951029@163.com;
基金资助:
Wenlin JIA1,2(), Zunhua ZHANG1,2(
), Mengni ZHOU2, Fan ZHANG2,3, Zhangzhi OUYANG3
Received:
2025-07-07
Revised:
2025-09-02
Contact:
Zunhua ZHANG
E-mail:jwl19951029@163.com;zunhuazhang@whut.edu.cn
摘要:
在全球能源转型背景下,风电、光伏等间歇性可再生能源的大规模并网对电力系统调节能力提出了严峻挑战。抽水蓄能凭借高能效、规模经济性及灵活多功能调节特性,是当前主流的系统级储能技术和解决弃风弃光问题的有效手段。我国抽水蓄能的理论资源储备十分丰富,但优质可开发站址受环境保护、社会约束和经济可行性等多重因素限制,实际可落地项目比例有限。同时,容量电价和电量补偿等政策机制不完善,对部分项目的核准和建设进度产生了显著影响。在此背景下,亟需通过拓展非常规站址类型并优化选址方法,提高项目的整体可行性与经济性。本文首先通过文献计量分析发现,抽水蓄能选址研究在国家能源政策驱动下,近年来呈快速增长趋势。围绕选址对象与技术方法两个维度构建综述框架:在对象维度,系统梳理了常规淡水、海水、地下空间以及新能源配套抽水蓄能四类典型模式的特征与约束条件,并提出了针对性的特征评价指标体系;在方法维度上,对地理信息系统、多准则决策、二者耦合方法及其他选址技术进行了系统性梳理和对比分析,重点讨论了各方法的理论基础、适用环节、优势与局限。研究成果可为抽水蓄能项目的选址决策提供系统化的理论参考和方法借鉴,有助于优化站址布局、提升规划科学性与可行性,从而推动抽水蓄能产业的可持续发展。
贾文林, 张尊华, 周梦妮, 张帆, 欧阳章智. 抽水蓄能选址技术方法及其发展综述[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0623.
Wenlin JIA, Zunhua ZHANG, Mengni ZHOU, Fan ZHANG, Zhangzhi OUYANG. A review of site selection methods and developments for pumped hydro energy storage[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0623.
表1
不同抽水蓄能拓扑结构在评估抽水蓄能开发潜力方面的简要描述[5-6]"
编号 | 具体描述 |
---|---|
T1 | 连接两个现有水库,通过一条或多条压力管,并增设一个电站,将其改造为抽水蓄能系统。 |
T2 | 将一个现有湖泊或水库改造为抽水蓄能系统,方法是在其附近寻找一个合适的地点建设第二个水库。第二水库可位于平坦或不陡峭的区域,如通过挖掘、修建浅坝、低洼地或山谷中建立。 |
T3 | 新建抽水蓄能,选址于合适的地形区域:如可通过修建大坝封闭的山谷、可削平的山顶等。这类选址范围更广,即不依赖现有湖泊或水库,也不假设建设第二水库时需要平坦区域。 |
T4 | 海洋型抽水蓄能:这类新建电站利用海洋作为下水库,并在附近建设上水库,或者将海洋作为上水库,并以洞穴作为下水库。 |
T5 | 多水库系统:结合抽水蓄能与常规水电站的系统。 |
T6 | 以大型河流作为下水库:该河流需能够为抽水蓄能系统提供足够的补水流量。 |
T7 | 利用废弃矿坑作为抽水蓄能基础设施 |
表10
MCDM方法在抽水蓄能选址中的应用"
方法类型 | 方法名称与简述 | 参考文献 |
---|---|---|
信息表 达方法 | 直觉模糊数(Triangular Intuitionistic Fuzzy Number, TIFN),处理不确定性和模糊信息 | [ |
梯形模糊数(Trapezoidal Fuzzy Number, TrFN),处理更广泛的不确定性和模糊信息 | [ | |
确定权 重方法 | 层次分析法(Analytic Hierarchy Process, AHP),通过层次结构分解和成对比较确定权重 | [ |
网络分析法(Analytic Network Process, ANP),处理依赖关系的AHP扩展 | [ | |
熵权法(Entropy Weight Method, EWM),基于数据离散程度计算客观权重 | [ | |
德尔菲法(Delphi Method, DELPHI),多轮专家匿名反馈达成共识 | [ | |
逐步权重评估法(Step-wise Weight Assessment Ratio Analysis, SWARA),专家逐步修正属性重要性 | [ | |
指标相关性权重法(Criteria Importance Through Intercriteria Correlation, CRITIC),结合冲突性与对比强度 | [ | |
组合有序加权平均(Combinative Ordered Weighted Averaging, C-OWA),考虑属性位置和权重 | [ | |
排序方法 | 逼近理想解排序法(Technique for Order Preference by Similarity to Ideal Solution, TOPSIS),最小化负理想解距离 | [ |
多准则妥协解排序法(VIšekriterijumsko KOmpromisno Rangiranje, VIKOR),平衡群体效用与个体遗憾 | [ | |
交互多准则决策(Tomada de Decisão Interativa Multicritério (Interactive Multicriteria Decision Making), TODIM),基于前景理论考虑心理行为 | [ | |
边界近似区域比较法(Multi-Attributive Border Approximation Area Comparison, MABAC),计算与边界区域的几何距离 | [ | |
偏好排序组织法(Preference Ranking Organization Method for Enrichment Evaluations, PROMETHEE),通过流度进行优劣排序 | [ | |
消去与选择转换算法(ÉLimination Et Choix Traduisant la REalité, ELECTRE),基于优势关系淘汰方案 | [ | |
灰色关联分析法(Grey Relational Analysis, GRA),通过数据序列相似度排序 | [ |
表12
GIS和MCDM在抽水蓄能选址全流程环节中的适用性对比"
环节 方法 | GIS | MCDM |
---|---|---|
数据 | 高效获取与集成多源空间数据(DEM、地质、水文、土地利用、输电线路等);进行空间定位与制图 | 可整合非空间数据(经济、社会、政策指标)至评价体系 |
预筛 | 基于空间约束快速识别候选站址;过滤不满足地形、水文条件的区域 | 可进行基于权重的初步多准则排序 |
可行性 | 分析候选站址的地质稳定性、水源条件、线路走向等空间可行性要素 | 从技术、经济、社会等维度评估可行性 |
评价 | 提供空间精度支撑(如库区范围、引水线路长度等),为指标量化提供数据来源 | 核心方法:建立指标体系、确定权重、计算综合得分 |
优化 | 基于空间分析优化站址布局与引水线路方案 | 调整指标权重与评价模型以匹配优化目标 |
不确定性 | 支持空间参数敏感性分析(地形精度、气候变化等) | 对权重变化、数据不确定性进行敏感性分析 |
环境/电网 | 分析生态敏感区、输电通道适配性、接入点空间匹配 | 评估环境、社会、电网接入等非空间因素 |
综合排序 | 基于空间可行性结果进行初步排名 | 基于综合指标得分进行最终排序 |
[1] | 赵娟,李秉晨,王喆等.基于BMW和TOPSIS的新型储能场景适用性评价[J].储能科学与技术, 2025, 14(1):443-455. |
ZHAO J, LI B C, WANG Z, et al. Suitability evaluation of new energy storage scenarios based on BMW and TOPSIS. Energy Storage Science and Technology, 2025, 14(1): 443–455. | |
[2] | 张京业, 林玉鑫, 邱清泉等. 基于斜坡和山体的重力储能技术研究进展[J]. 储能科学与技术, 2024, 13(03):924-933. |
ZHANG J Y, LIN Y X, QIU Q Q, et al. Research progress on gravity energy storage technology based on slopes and mountains. Energy Storage Science and Technology, 2024, 13(3): 924–933. | |
[3] | 王粟, 肖立业, 唐文冰等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11(05):1575-1582. |
WANG S, XIAO L Y, TANG W B, et al. A review on novel gravity energy storage technologies. Energy Storage Science and Technology, 2022, 11(5): 1575–1582. | |
[4] | 邱清泉, 罗晓悦, 林玉鑫等. 垂直式重力储能系统的研究进展和关键技术[J]. 储能科学与技术, 2024, 13(03):934-945. |
QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies of vertical gravity energy storage systems. Energy Storage Science and Technology, 2024, 13(3): 934–945. | |
[5] | SETIS expert workshop on the assessment of the potential of pumped hydropower storage – Petten, the Netherlands, 2nd and 3rd April 2012[M]. Publications Office, 2012. |
[6] | GUTIéRREZ M G, ARáNTEGUI R L. Assessment of the European potential for pumped hydropower energy storage based on two existing reservoirs[J]. Renewable Energy, 2015, 75:856-868. |
[7] | 华向阳, 宗月民. 新能源发展背景下抽水蓄能开发相关问题的探讨[C], 2010:4. |
HUA X Y, ZONG Y M. Discussion on issues related to pumped storage development under the background of new energy development. Proceedings of the Conference, 2010: 4. | |
[8] | 刘精敏. 初议华中电网抽水蓄能电站选址与开发模式[J]. 华中电力, 1996, (04):59-62. |
LIU J M. Preliminary discussion on site selection and development modes of pumped storage power stations in the Central China Power Grid. Central China Electric Power, 1996, (4): 59–62. | |
[9] | 宋云丽, 严云籍, 翟林博等. 抽水蓄能电站建设的地理要素分析及GIS选址[J]. 云南水力发电, 2022, 38(04):131-134. |
SONG Y L, YAN Y J, ZHAI L B, et al. Analysis of geographical elements and GIS-based site selection for pumped storage power station construction. Yunnan Hydropower, 2022, 38(4): 131–134. | |
[10] | 张德强. 浅析抽水蓄能电站GIS选址与设备安装[J]. 储能科学与技术, 2022, 11(12):4100-4101. |
ZHANG D Q. Brief analysis of GIS-based site selection and equipment installation for pumped storage power stations. Energy Storage Science and Technology, 2022, 11(12): 4100–4101. | |
[11] | 张建伟, 董飞燕, 李涛. 抽水蓄能电站规划设计研究[J]. 中小企业管理与科技(上旬刊), 2009, (12):299. |
ZHANG J W, DONG F Y, LI T. Research on planning and design of pumped storage power stations. Management and Technology of Small and Medium-sized Enterprises (First Issue), 2009, (12): 299. | |
[12] | 张永先, 赵源, 周建平. 当前抽水蓄能电站运营经济性分析概要[J]. 水电与抽水蓄能, 2024, 10(03):6-10+15. |
ZHANG Y X, ZHAO Y, ZHOU J P. Summary analysis on current operational economy of pumped storage power stations. Hydropower and Pumped Storage, 2024, 10(3): 6–10, 15. | |
[13] | 赵向涛, 郭华, 林永生等. 我国多地抽水蓄能电站选址特点初步分析[J]. 中国水运(下半月), 2023, 23(12):59-61. |
ZHAO X T, GUO H, LIN Y S, et al. Preliminary analysis on site selection characteristics of pumped storage power stations in multiple regions of China. China Water Transport (Second Half), 2023, 23(12): 59–61. | |
[14] | 张涛, 左双英, 沈春勇等. 岩溶洼地抽水蓄能建库适宜性评价体系及目标优选[J]. 中国岩溶, 2023, 42(06):1161-1172. |
ZHANG T, ZUO S Y, SHEN C Y, et al. Evaluation system and target optimization for karst depression reservoir suitability in pumped storage. Carsologica Sinica, 2023, 42(6): 1161–1172. | |
[15] | 费香泽, 顾克, 刘佳龙等. 基于卫星遥感地形数据的抽水蓄能电站上下水库选址方法研究[J]. 水电能源科学, 2023, 41(02):79-82. |
FEI X Z, GU K, LIU J L, et al. Research on site selection method for upper and lower reservoirs of pumped storage power stations based on satellite remote sensing terrain data. Hydropower and Energy Science, 2023, 41(2): 79–82. | |
[16] | 郭果, 郑克勋, 余波等. 岩溶洼地抽蓄上库选址地质适宜性定量评价研究[J]. 工程地质学报, 2024:1-13. |
GUO G, ZHENG K X, YU B, et al. Quantitative evaluation of geological suitability for upper reservoir site selection in karst depressions. Journal of Engineering Geology, 2024: 1–13. | |
[17] | BANIYA R, TALCHABHADEL R, Panthi J, et al. Nepal Himalaya offers considerable potential for pumped storage hydropower[J]. Sustainable Energy Technologies and Assessments, 2023, 60. |
[18] | 熊章强, 谢尚平. 抽水蓄能电站大坝选址中的浅层地震方法[C]. 中国地球物理学会第十八届年会, 2002:1. |
XIONG Z Q, XIE S P. Application of shallow seismic method in dam site selection of pumped storage power stations. Proceedings of the 18th Annual Meeting of the Chinese Geophysical Society, 2002: 1. | |
[19] | 王玉涛. 某抽水蓄能库址区岩溶现象分析[J]. 内蒙古水利, 2023, (07):14-15. |
WANG Y T. Analysis of karst phenomena in the reservoir area of a pumped storage project. Inner Mongolia Water Conservancy, 2023, (7): 14–15. | |
[20] | 王玉威, 徐子桥. 微动在广西田东县抽水蓄能电站大坝选址勘查中的应用研究[J]. 地下水, 2023, 45(03):293-295. |
WANG Y W, XU Z Q. Application of microtremor in dam site investigation of Tiandong pumped storage power station in Guangxi. Groundwater, 2023, 45(3): 293–295. | |
[21] | Li G C, Han Z C. Principal engineering geological problems in the Shisanling Pumped Storage Power Station, China[J]. Engineering Geology, 2004, 76(1-2):165-176. |
[22] | SHANG Y J, WANG S J, LI G C, Li G C, et al. Retrospective case example using a comprehensive suitability index (CSI) for siting the Shisan-Ling power station, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5):839-853. |
[23] | 孙坤, 张驰飞. 抽水蓄能电站农村移民搬迁安置居民点选址浅谈[J]. 红水河, 2024, 43(06):83-86. |
SUN K, ZHANG C F. Preliminary discussion on resettlement site selection for rural migrants in pumped storage power station projects. Hongshui River, 2024, 43(6): 83–86. | |
[24] | 位宁, 胡文豪. 抽水蓄能电站建设运行管理营地选址规划及方案设计探讨[J]. 水电站设计, 2024, 40(03):99-102. |
WEI N, HU W H. Planning and design discussion of construction and operation management camps for pumped storage power stations. Hydropower Station Design, 2024, 40(3): 99–102. | |
[25] | 殷康, 窦春锋, 蒋正轲等. 抽水蓄能电站工程渣场征地移民实践与问题探讨[J]. 人民黄河, 2022, 44(S1):151-153. |
YIN K, DOU C F, JIANG Z K, et al. Practice and issues in land acquisition and resettlement for spoil grounds of pumped storage projects. Yellow River, 2022, 44(S1): 151–153. | |
[26] | 贺元启. 中小抽水蓄能电站厂房开发方式研究[J]. 能源工程, 2023, 43(05):26-31. |
HE Y Q. Research on development modes of powerhouse for small and medium-sized pumped storage power stations. Energy Engineering, 2023, 43(5): 26–31. | |
[27] | 黄舒, 阳凤, 黎军平. 抽水蓄能电站水土保持方案弃渣场补充报告编制要点的探讨[J]. 科技与创新, 2019, (05):67-69. |
HUANG S, YANG F, LI J P. Discussion on key points in preparing supplementary reports on spoil grounds for soil and water conservation plans in pumped storage power stations. Science and Innovation, 2019, (5): 67–69. | |
[28] | 刘翔宇. 浅谈阳江抽水蓄能工程弃渣场场址选择[J]. 广东水利水电, 2016, (03):56-58. |
LIU X Y. Discussion on site selection for spoil grounds of Yangjiang pumped storage project. Guangdong Water Resources and Hydropower, 2016, (3): 56–58. | |
[29] | 阳凤, 蔡德文, 郝连安. 抽水蓄能电站土石方综合利用、弃渣场选址与措施布局[J]. 水电与新能源, 2024, 38(07):47-50. |
YANG F, CAI D W, HAO L A. Comprehensive utilization of earth-rock materials, spoil site selection and layout measures for pumped storage stations. Hydropower and New Energy, 2024, 38(7): 47–50. | |
[30] | 张晓利. 抽水蓄能电站渣场布置及防护研究[D]. 2014. |
ZHANG X L. Research on layout and protection of spoil sites in pumped storage stations [D]. 2014. | |
[31] | 周军军, 方贵平. 琼中抽水蓄能电站弃渣场选址及水土保持措施设计[C]. 中国水力发电工程学会电网调峰与抽水蓄能专业委员会2012年学术交流年会, 2012:3. |
ZHOU J J, FANG G P. Site selection and soil-water conservation design for spoil grounds in Qiongzhong pumped storage power station. Proceedings of 2012 Annual Conference of Grid Peaking and Pumped Storage Committee, Chinese Society for Hydropower Engineering, 2012: 3. | |
[32] | 柏睿, 韩冬, 金伟等. 混合式抽水蓄能电站建设运行关键问题研究[J]. 人民长江, 2024, 55(11):46-56. |
BAI R, HAN D, JIN W, et al. Key issues in the construction and operation of hybrid pumped storage power stations. Yangtze River, 2024, 55(11): 46–56. | |
[33] | 段力伟, 杨超. 计及光伏不确定性的分布式抽水蓄能选址定容与优化调度[J]. 电气应用, 2025, 44(04):96-105. |
DUAN L W, YANG C. Site selection, sizing and optimal scheduling of distributed pumped storage considering photovoltaic uncertainty. Electrical Applications, 2025, 44(4): 96–105. | |
[34] | 卫凯. 提升多馈入受端电网安全稳定性的储能规划方法[D]. 2023. |
WEI K. Planning method of energy storage to enhance security and stability of multi-infeed receiving-end power grids [D]. 2023. | |
[35] | Ji L Y, Li C B, Li X P, et al. Multi-method combination site selection of pumped storage power station considering power structure optimization[J]. Sustainable Energy Technologies and Assessments, 2022, 49. |
[36] | JI L Y, LI X P, HUANG W, et al. Study on site selection combination evaluation of pumped-storage power station based on cycle elimination — Based on the empirical analysis of North China[J]. Journal of Energy Storage, 2022, 52. |
[37] | DANEHKAR S, YOUSEFI H. Developing site selection indices for hydro-pumped storage systems (Case study: Tehran Province, Iran)[J]. Energy Storage and Saving, 2025, 4(1):27-37. |
[38] | NZOTCHA U, KENFACK J, MANJIA M B. Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application[J]. Renewable & Sustainable Energy Reviews, 2019, 112:930-947. |
[39] | SUN Z B, ZHAO Y X, Bolz P, et al. A multimethod GIS-based framework for site selection of underground pumped storage power stations using closing coal mines: A case study of the Shanxi province, China[J]. Renewable Energy, 2025, 243:122521. |
[40] | LU X, WANG S H. A GIS-based assessment of Tibet's potential for pumped hydropower energy storage[J]. Renewable and Sustainable Energy Reviews, 2017, 69:1045-1054. |
[41] | ALI S, STEWART R A, SAHIN O, et al. Integrated GIS-AHP-based approach for off-river pumped hydro energy storage site selection[J]. Applied Energy, 2023, 337. |
[42] | ALI S, STEWART R A, SAHIN O, et al. Spatial bayesian approach for socio-economic assessment of pumped hydro storage[J]. Renewable and Sustainable Energy Reviews, 2024, 189. |
[43] | CHENG X, ZHAO H, ZHANG Y Q, et al. A study on site selection of pumped storage power plants based on C-OWA-AHP and VIKOR-GRA: A case study in China[J]. Journal of Energy Storage, 2023, 72. |
[44] | CONNOLLY D, MACLAUGHLIN S, Leahy M. Development of a computer program to locate potential sites for pumped hydroelectric energy storage[J]. Energy, 2010, 35(1):375-381. |
[45] | DE LUIS-RUIZ J M, CARCEDO HAYA J, PEREDA GARCÍA R, et al. Optimal location of hydraulic energy storage using geographic information systems and multi-criteria analysis[J]. Journal of Energy Storage, 2022, 49. |
[46] | JIMÉNEZ CAPILLA J A, CARRIÓN J A, ALAMEDA-HERNANDEZ E. Optimal site selection for upper reservoirs in pump-back systems, using geographical information systems and multicriteria analysis[J]. Renewable Energy, 2016, 86:429-440. |
[47] | LI J L, CHEN D Y, HAN W, et al. Site identification and capacity determination of pumped hydro storage plants using GIS and spatial MCDM in Northwest China[J]. Energy Conversion and Management, 2024, 322:119179. |
[48] | OUCHANI F Z, JBAIHI O, MERROUNI A A, et al. Geographic Information System-based Multi-Criteria Decision-Making analysis for assessing prospective locations of Pumped Hydro Energy Storage plants in Morocco: Towards efficient management of variable renewables[J]. Journal of Energy Storage, 2022, 55. |
[49] | SONG Y L, HE H L, YAN Y J, et al. A Toolbox for generalized pumped storage power station based on terrain in ArcGIS Environment[J]. Renewable Energy, 2024, 220. |
[50] | STOCKS M, STOCKS R, LU B, et al. Global Atlas of Closed-Loop Pumped Hydro Energy Storage[J]. Joule, 2021, 5(1):270-284. |
[51] | WU Y N, LIU L Y, GAO J W, et al. An Extended VIKOR-Based Approach for Pumped Hydro Energy Storage Plant Site Selection with Heterogeneous Information[J]. Information, 2017, 8(3):106-106. |
[52] | 邓子昂, 张继勋, 常飞等. 基于博弈论组合赋权的抽水蓄能电站选址评价[J]. 水力发电, 2024, 50(08):22-27. |
DENG Z A, ZHANG J X, CHANG F, et al. Site selection evaluation of pumped storage power stations based on game theory and combined weighting. Hydropower, 2024, 50(8): 22–27. | |
[53] | 龚振, 邓子昂, 常飞等. 基于改进层次分析法的抽水蓄能电站选址评价[J]. 水利技术监督, 2025, (02):222-226. |
GONG Z, DENG Z A, CHANG F, et al. Site selection evaluation of pumped storage power stations based on improved AHP. Hydropower Technology Supervision, 2025, (2): 222–226. | |
[54] | 李姝颖, 周申蓓, 徐琪. 基于人工智能技术的抽水蓄能电站预选址研究[J]. 水利水电技术(中英文), 2025:1-15. |
LI S Y, ZHOU S B, XU Q. Pre-site selection of pumped storage power stations based on artificial intelligence technology. Water Resources and Hydropower Engineering (Bilingual Edition), 2025: 1–15. | |
[55] | 刘心怡, 朱孟兰, 黄瑞等. 新时代背景下工程三维规划选址创新技术方法研究——以抽水蓄能规划选址为例[J]. 水电与抽水蓄能, 2023, 9(S1):91-94+90. |
LIU X Y, ZHU M L, HUANG R, et al. Research on innovative 3D planning and site selection technologies under the new era: A case study of pumped storage. Hydropower and Pumped Storage, 2023, 9(S1): 91–94, 90. | |
[56] | 宋云丽, 吕鹏, 吴白玉等. 基于arcpy、DEM抽水蓄能电站选址方案的研究[J]. 云南水力发电, 2022, 38(04):135-138. |
SONG Y L, LÜ P, WU B Y, et al. Research on pumped storage site selection scheme based on arcpy and DEM. Yunnan Hydropower, 2022, 38(4): 135–138. | |
[57] | 汪威, 潘少华, 罗立哲等. 基于AHP-熵权法的抽水蓄能电站施工变电站选址规划研究[J]. 水利水电快报, 2024, 45(12):16-22. |
WANG W, PAN S H, LUO L Z, et al. Planning study on substation site selection for pumped storage construction based on AHP–entropy weight method. Hydropower Bulletin, 2024, 45(12): 16–22. | |
[58] | 张亮. 晋中地区抽水蓄能电站工程选址初探[J]. 山西水利科技, 2024, (04):13-14+33. |
ZHANG L. Preliminary study on site selection of pumped storage projects in Jinzhong region. Shanxi Water Resources Science and Technology, 2024, (4): 13–14, 33. | |
[59] | GHORBANI N, MAKIAN H, BREYER C. A GIS-based method to identify potential sites for pumped hydro energy storage - Case of Iran[J]. energy, 2019, 169:854-867. |
[60] | LEE C, CHOI H W, PARK J, et al. Derivation of Candidate Sites for a Tidal Current-Pumped Storage Hybrid Power Plant Using GIS-based Site Selection Analysis GIS기반 적지분석을 통한 조류-양수 융합발전시스템 설치후보지 도출 연구[J]. Journal of the Korean Association of Geographic Information Studies, 2020, 23(4):184-207. |
[61] | 石文辉, 查浩, 罗魁等. 我国海水抽蓄电站发展初探[J]. 中国能源, 2015, 37(12):36-40. |
SHI W H, ZHA H, LUO K, et al. Preliminary exploration on seawater pumped storage station development in China. China Energy, 2015, 37(12): 36–40. | |
[62] | WU Y N, ZHANG T, XU C B, et al. Location selection of seawater pumped hydro storage station in China based on multi-attribute decision making[J]. Renewable Energy, 2019, 139:410-425. |
[63] | 卞正富, 朱超斌, 周跃进等. 黄河流域九省区废弃矿井抽水蓄能利用潜力评估[J]. 煤田地质与勘探, 2022, 50(12):51-64. |
BIAN Z F, ZHU C B, ZHOU Y J, et al. Utilization potential assessment of abandoned mines for pumped storage in nine provinces of the Yellow River Basin. Coal Geology & Exploration, 2022, 50(12): 51–64. | |
[64] | 王兵, 刘朋帅, 邓凯磊. 基于模糊多准则决策模型的废弃矿井抽水蓄能电站选址研究[J]. 矿业科学学报, 2021, 6(06):667-677. |
WANG B, LIU P S, DENG K L. Site selection of pumped storage stations in abandoned mines based on fuzzy multi-criteria decision-making. Journal of Mining Science, 2021, 6(6): 667–677. | |
[65] | TAO Y, LUO X, ZHOU J L, et al. Site selection for underground pumped storage plant using abandoned coal mine through a hybrid multi-criteria decision-making framework under the fuzzy environment: A case in China[J]. Journal of Energy Storage, 2022, 56. |
[66] | YONG X K, CHEN W J, WU Y N, et al. A two-stage framework for site selection of underground pumped storage power stations using abandoned coal mines based on multi-criteria decision-making method: An empirical study in China[J]. Energy Conversion and Management, 2022, 260. |
[67] | CHEN Q J, HOU Z M, WU X N, et al. A Two-Step Site Selection Concept for Underground Pumped Hydroelectric Energy Storage and Potential Estimation of Coal Mines in Henan Province[J]. Energies, 2023, 16(12). |
[68] | YANG K, FU Q, YUAN L, et al. Research on development demand and potential of pumped storage power plants combined with abandoned mines in China[J]. Journal of Energy Storage, 2023, 63. |
[69] | SUN Z B, ZHAO Y X, REN J D. Regional development potential of underground pumped storage power station using abandoned coal mines: A case study of the Yellow River Basin, China[J]. Journal of Energy Storage, 2024, 77. |
[70] | AHMADI S H R, NOOROLLAHI Y, GHANBARI S, et al. Hybrid fuzzy decision making approach for wind-powered pumped storage power plant site selection: A case study[J]. Sustainable Energy Technologies and Assessments, 2020, 42. |
[71] | WU Y N, ZHANG T. Optimal Location Selection of Wind-Seawater Pumped Storage Plant via Internal Type-2 Trapezoidal Fuzzy Numbers Based VIKOR Model[C]. 2019 9TH International Conference on Power and Energy Systems (ICPES), 2019 |
[72] | 王珑. 抽水蓄能电站选址及与风电联合运行优化研究[D]. 2017. |
WANG L. Site selection and joint operation optimization of pumped storage and wind power [D]. 2017. | |
[73] | GUO F J, GAO J W, MEN H J, et al. Large-scale group decision-making framework for the site selection of integrated floating photovoltaic-pumped storage power system[J]. Journal of Energy Storage, 2021, 43. |
[74] | WU Y N, ZHANG T, XU C B, et al. Optimal location selection for offshore wind-PV-seawater pumped storage power plant using a hybrid MCDM approach: A two-stage framework[J]. Energy Conversion and Management, 2019, 199. |
[75] | 方喻弘, 肖潇, 叶松等. 风光水储多能互补系统选址中的遥感技术应用[C]. 2023中国水利学术大会, 2023:5. |
FANG Y H, XIAO X, YE S, et al. Application of remote sensing technology in multi-energy complementary system site selection with wind–solar–hydro–storage. Proceedings of 2023 China Water Resources Academic Conference, 2023: 5. | |
[76] | 况静, 兰洲, 杨恺等. 含风光水多源互补电力系统的分布式抽蓄选址定容与优化调度[J]. 能源工程, 2022, 42(04):21-27. |
KUANG J, LAN Z, YANG K, et al. Site selection, sizing and scheduling optimization of distributed pumped storage in wind–solar–hydro hybrid systems. Energy Engineering, 2022, 42(4): 21–27. | |
[77] | 任岩, 侯尚辰. 基于多能互补的抽水蓄能电站站址选择的研究[J]. 水电与抽水蓄能, 2021, 7(06):37-39. |
REN Y, HOU S C. Research on site selection of pumped storage power stations based on multi-energy complementarity. Hydropower and Pumped Storage, 2021, 7(6): 37–39. |
[1] | 刘默斯, 孙志媛, 李今昭, 郑琨, 陈立春. 基于CMMOPSO算法的构网型储能接入高比例新能源电网的优化配置[J]. 储能科学与技术, 2025, 14(1): 162-171. |
[2] | 侯世豪, 赵波, 张利. 能源转型下基于碳排放与新能源阶梯惩罚的抽水蓄能双层优化研究[J]. 储能科学与技术, 2024, 13(7): 2414-2424. |
[3] | 聂子攀, 肖立业, 邱清泉, 张京业. 地下抽水蓄能发展综述[J]. 储能科学与技术, 2024, 13(5): 1606-1619. |
[4] | 赵添辰, 张弓, 张云飞, 侯世豪, 王婷婷. “双碳”目标下抽水蓄能提升系统保供能力的技术经济性研究[J]. 储能科学与技术, 2024, 13(3): 1059-1073. |
[5] | 武鑫, 尚文举, 马志勇, 滕伟, 张爽, 罗海荣. 抽水蓄能-飞轮混合储能系统协调控制方法[J]. 储能科学与技术, 2023, 12(2): 468-476. |
[6] | 魏震波, 姚怡欣, 张雯雯, 罗紫航, 李银江, 任语杰. 基于完备集合经验模态分解的含抽蓄微电网混合储能容量优化配置[J]. 储能科学与技术, 2023, 12(11): 3414-3424. |
[7] | 刘连德, 何江, 周家旭, 李翠萍, 李凯强, 朱星旭, 严干贵, 李军徽. 含高比例风光发电的电力系统中抽蓄电站的优化控制策略[J]. 储能科学与技术, 2022, 11(7): 2197-2205. |
[8] | 郭雨涵, 郁丹, 杨鹏, 王子绩, 王金涛. 基于贪婪算法的分布式储能系统容量优化配置方法[J]. 储能科学与技术, 2022, 11(7): 2295-2304. |
[9] | 刘坚. 适应可再生能源消纳的储能技术经济性分析[J]. 储能科学与技术, 2022, 11(1): 397-404. |
[10] | 陈星宇, 刘忠, 寇攀高, 邹淑云, 潘宜桦. 离网型风-光-抽水蓄能恒压供电系统[J]. 储能科学与技术, 2021, 10(1): 355-361. |
[11] | 龚国仙, 吕静亮, 姜新建, 孙旭东. 参与一次调频的双馈式可变速抽水蓄能机组运行控制[J]. 储能科学与技术, 2020, 9(6): 1878-1884. |
[12] | 赵月晶, 何广利, 缪平, 许壮, 杨康, 田中辉, 董文平, 熊亚林. 35 MPa/70 MPa加氢机加注性能综合评价研究[J]. 储能科学与技术, 2020, 9(3): 702-706. |
[13] | 丁倩, 曾平良, 孙轶恺, 徐辰婧, 徐振超. 一种考虑可再生能源不确定性的分布式储能电站选址定容规划方法[J]. 储能科学与技术, 2020, 9(1): 162-169. |
[14] | 王婷婷, 曹飞, 唐修波, 李阳, 张昊晟. 利用矿洞建设抽水蓄能电站的技术可行性分析[J]. 储能科学与技术, 2019, 8(1): 195-200. |
[15] | 傅昊, 姜彤, 崔岩, 权超. 基于直线电机的虚拟抽水蓄能系统运行控制策略[J]. 储能科学与技术, 2019, 8(1): 98-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||