• •
任文兴1(), 王亚龙2, 陈鹏飞2, 梁光1, 李佩华2, 王剑2(
)
收稿日期:
2025-07-22
修回日期:
2025-08-19
通讯作者:
王剑
E-mail:rwx1003@163.com;wangjian@tyut.edu.cn
作者简介:
任文兴(1994—),男,本科,锂电负极材料,E-mail:rwx1003@163.com;
基金资助:
Wenxing Ren1(), Yalong Wang2, Pengfei Chen2, Guang Liang1, Peihua Li2, Jian Wang2(
)
Received:
2025-07-22
Revised:
2025-08-19
Contact:
Jian Wang
E-mail:rwx1003@163.com;wangjian@tyut.edu.cn
摘要:
粘结剂是锂离子电池的重要组成部分,选取性能适配的高效粘结剂可以协助电极材料稳定储锂。本文制备了一种以氢键相连接的水系复合粘结剂(命名为LA132@CMC-Na),并对其在硅基材料中的性能表现进行研究。高效的分子间氢键赋予了LA132@CMC-Na粘结剂优异的力学性能,其弹性自愈的特性可以有效缓解硅基材料在嵌/脱锂过程中的体积变化。LA132@CMC-Na粘结剂分子链上含有的丰富活性基团还可以凭借其高电子活性来促进硅基材料储锂反应中的锂离子扩散动力学,同时降低电池的运行内阻。采用LA132@CMC-Na粘结剂的半电池在0.2 A g-1电流密度下循环200圈后仍具有1415.21 mAh g-1的可逆高比容量且无明显容量衰减,以上工作可以为锂离子电池高性能硅基负极粘结剂的研究提供经验并有望应用于实际生产。
中图分类号:
任文兴, 王亚龙, 陈鹏飞, 梁光, 李佩华, 王剑. 具有优异力学性能和电导率的LA132@CMC-Na水系复合粘结剂制备及适配锂电硅基负极研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0663.
Wenxing Ren, Yalong Wang, Pengfei Chen, Guang Liang, Peihua Li, Jian Wang. A water-based composite binder interconnected by hydrogen bonds exhibiting outstanding mechanical properties and electrical conductivity for silicon-based anodes in lithium-ion batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0663.
表1
样品成分配比(质量分数)表"
样品命名 | 活性物质/% | 导电剂/% | 粘结剂/% |
---|---|---|---|
SSGC-P | 60 Si/SiOx-G-C | 20 | 20 PVDF |
SSGC-L@C | 60 Si/SiOx-G-C | 20 | 20 LA132@CMC-Na |
SSGC-L@C-21 | 60 Si/SiOx-G-C | 20 | 20 LA132@CMC-Na-21 |
SSGC-L@C-12 | 60 Si/SiOx-G-C | 20 | 20 LA132@CMC-Na-12 |
SSGC-L | 60 Si/SiOx-G-C | 20 | 20 LA132 |
SSGC-C | 60 Si/SiOx-G-C | 20 | 20 CMC-Na |
Si-P | 60 Si | 20 | 20 PVDF |
Si-L@C | 60 Si | 20 | 20 LA132@CMC-Na |
表3
不同粘结剂硅碳的性能对比"
样品 | 低电流密度下容量 (mAh g-1) | 高电流密度下容量 (mAh g-1) |
---|---|---|
Si/SiOx-G-C [ | 1052.6 (0.2 A g-1) | 309.0 (4.0 A g-1) |
PAA [ | 1050.0 (0.1 A g-1) | 184.0 (0.5 A g-1) |
P-P250@Si-800 [ | 501.8 (0.2 A g-1) | 217.0 (2.0 A g-1) |
Si@void/CNF [ | 913.6 (0.1 A g-1) | 487.4 (1.0 A g-1) |
Nano-Si/G/C-2 [ | 1284.0 (0.2 A g-1) | 368.0 (1.0 A g-1) |
SSGC-L@C(本工作) | 1415.2 (0.2 A g-1) | 804.1 (1.0 A g-1) |
[1] | K. Xia, X. Zeng, H. Zhu, J. Gong, H. Luo, Mg-doped Li2ZnTi3O8/C as high-performance anode materials for lithium-ion batteries, Vacuum 207 (2023) 111614. https://doi.org/10.1016/j.vacuum.2022.111614. |
[2] | P. Liu, Z. Wang, Y. Liu, G. Wen, Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries, Journal of Inorganic Materials 39(9) (2024) 992-1004. https://doi.org/10.15541/jim20240036. |
[3] | A. Casimir, H. Zhang, O. Ogoke, J. Amine, J. Lu, G. Wu, Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation, Nano Energy 47(8) (2018) 2600-2606. https://doi.org/10.1016/j.nanoen.2016.07.023. |
[4] | P. Chen, S. Ma, P. Li, Y. Xin, A. Wei, W. Zhang, J. Wang, Y. Liu, The synthesis of core/shell Si/SiOx-G-C anode material interconnected with oxygen-rich chemical bonds and their enhanced lithium-ion storage performance, Journal of Alloys and Compounds 1010 (2025). https://doi.org/10.1016/j.jallcom.2024.176990. |
[5] | Y. Yang, S. Wu, Y. Zhang, C. Liu, X. Wei, D. Luo, Z. Lin, Towards efficient binders for silicon based lithium-ion battery anodes, Chemical Engineering Journal 406 (2021). https://doi.org/10.1016/j.cej.2020.126807. |
[6] | Z. Ma, Y. Lyu, H. Yang, Q. Li, B. Guo, A. Nie, Systematic investigation of the Binder's role in the electrochemical performance of tin sulfide electrodes in SIBs, Journal of Power Sources 401 (2018) 195-203. https://doi.org/10.1016/j.jpowsour.2018.08.081. |
[7] | R. Wang, L. Feng, W. Yang, Y. Zhang, Y. Zhang, W. Bai, B. Liu, W. Zhang, Y. Chuan, Z. Zheng, H. Guan, Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries, Nanoscale Research Letters 12 (2017). https://doi.org/10.1186/s11671-017-2348-6. |
[8] | Y. Yu, C. Yang, J. Zhu, B. Xue, J. Zhang, M. Jiang, , Angewandte Chemie-International Edition 64(6) (2025). https://doi.org/10.1002/anie.202418794. |
[9] | L. Yue, H. Zhong, L. Zhang, Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process, Electrochimica Acta 76 (2012) 326-332. https://doi.org/10.1016/j.electacta.2012.05.038. |
[10] | S. Li, J. Nie, Y. Shi, X. Tao, F. Wang, J. Tian, S. Lin, X. Chen, L. Wang Zhong, Contributions of Different Functional Groups to Contact Electrification of Polymers, Advanced Materials 32(25) (2020). https://doi.org/10.1002/adma.202001307. |
[11] | M.K. Dufficy, R.D. Corder, K.A. Dennis, P.S. Fedkiw, S.A. Khan, Guar Gel Binders for Silicon Nanoparticle Anodes: Relating Binder Rheology to Electrode Performance, Acs Applied Materials & Interfaces 13(43) (2021) 51403-51413. https://doi.org/10.1021/acsami.1c10776. |
[12] | Y. Wang, Z. Ma, Z. Cao, T. Cai, G. Liu, H. Cheng, F. Zhao, L. Cavallo, Q. Li, J. Ming, Unraveling New Role of Binder Functional Group as a Probe to Detect Dynamic Lithium-Ion De-Solvation Process toward High Electrode Performances, Advanced Functional Materials 33(45) (2023). https://doi.org/10.1002/adfm.202305974. |
[13] | D. Liu, Y. Zhao, R. Tan, L. Tian, Y. Liu, H. Chen, F. Pan Novel conductive binder for high-performance silicon anodes in lithium ion batteries, Nano Energy 36 (2017) 206-212. https://doi.org/10.1016/j.nanoen.2017.04.043. |
[14] | W. Zeng, L. Wang, X. Peng, T. Liu, Y.Jiang, F. Qin, L. Hu, P. Chu, K. Huo, Y. Zhou, Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries, Advanced Energy Materials 8 (2018) 1702314. https://doi.org/10.1002/aenm.201702314. |
[15] | M. Lee, H. Jung, M. Lee, H. Kwak, J. Nam, Model fluid for coating flows of Li-ion battery anode slurry, Journal of Materials Science 57(38) (2022) 17935-17945. https://doi.org/10.1007/s10853-022-07615-9. |
[16] | L. Liu, P. Luo, H. Bai, Y. Huang, P. Lai, Y. Yuan, J. Wen, C. Xie, J. Li, Gradient H-Bonding Supports Highly Adaptable and Rapidly Self-Healing Composite Binders with High Ionic Conductivity for Silicon Anodes in Lithium-Ion Batteries, Macromolecular Rapid Communications 44(6) (2023). https://doi.org/10.1002/marc.202200822. |
[17] | H. Huang, G. Han, J. Xie, Q. Zhang, The Effect of Commercialized Binders on Silicon Oxide Anode Material for High Capacity Lithium ion Batteries, International Journal of Electrochemical Science 11(10) (2016) 8697-8708. https://doi.org/10.20964/2016.10.29. |
[18] | H. Park, D. Lee, T. Song, Synthesis of Carboxymethyl Cellulose Lithium by Weak Acid Treatment and Its Application in High Energy-Density Graphite Anode for Li-Ion Batteries, Industrial & Engineering Chemistry Research 57(27) (2018) 8895-8901. https://doi.org/10.1021/acs.iecr.8b00851. |
[19] | R. Zhou, H. Guo, Y. Yang, Z. Wang, X. Li, Y. Zhou, An alternative carbon source of silicon-based anode material for lithium ion batteries, Powder Technology 295 (2016) 296-302. https://doi.org/10.1016/j.powtec.2016.03.054. |
[20] | L. Tan, R. Shi, Q. Ji, B. Wang, F. Quan, Y. Xia, Effect of Na+ and Ca2+ on the Thermal Degradation of Carboxymethylcellulose in Air, Polymers & Polymer Composites 25(4) (2017) 309-314. https://doi.org/10.1177/096739111702500408. |
[21] | X. Hong, J. Jin, Z. Wen, S. Zhang, Q. Wang, C. Shen, K. Rui, On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders, Journal of Power Sources 324 (2016) 455-461. https://doi.org/10.1016/j.jpowsour.2016.04.114. |
[22] | J.-X. Xue, S.-X. Jia, T.-Q. Xiang, J.-J. Zhou, L. Li, Cross-Linkable Binders for Si Anodes in High-Energy-Density Lithium-Ion Batteries, Acs Applied Materials & Interfaces 16(29) (2024) 38458-38465. https://doi.org/10.1021/acsami.4c05105. |
[23] | D. Zhang, Y. Ouyang, Y. Wang, L. Liu, H. Wang, J. Cui, M. Wang, N. Li, H. Zhao, S. Ding, A gradient-distributed binder with high energy dissipation for stable silicon anode, Journal of Colloid and Interface Science 673 (2024) 312-320. https://doi.org/10.1016/j.jcis.2024.06.086. |
[24] | R. Ye, J. Liu, J. Tian, Y. Deng, X. Yang, Q. Chen, P. Zhang, J. Zhao, Novel Binder with Cross-Linking Reconfiguration Functionality for Silicon Anodes of Lithium-Ion Batteries, Acs Applied Materials & Interfaces 16(13) (2024) 16820-16829. https://doi.org/10.1021/acsami.4c00590. |
[25] | W.B. Hawley, J. Li, Electrode manufacturing for lithium-ion batteries-Analysis of current and next generation processing, Journal of Energy Storage 25 (2019). https://doi.org/10.1016/j.est.2019.100862. |
[26] | Z.-Y. Gu, J.-M. Cao, J.-Z. Guo, X.-T. Wang, X.-X. Zhao, S.-H. Zheng, Z.-H. Sun, J.-L. Yang, K.-Y. Zhang, H.-J. Liang, K. Li, X.-L. Wu, Hybrid Binder Chemistry with Hydrogen-Bond Helix for High-Voltage Cathode of Sodium-Ion Batteries, Journal of the American Chemical Society 146(7) (2024) 4652-4664. https://doi.org/10.1021/jacs.3c11739. |
[27] | Haino, T. Molecular-recognition-directed formation of supramolecular polymers. Polym J 45, 363–383 (2013). https://doi.org/10.1038/pj.2012.144. |
[28] | S.N.S. Hapuarachchi, K. Wasalathilake, J.Y. Nerkar, E.A. Jaatinen, A.P. O'Mullane, C. Yan, Mechanically Robust Tapioca Starch Composite Binder with Improved Ionic Conductivity for Sustainable Lithium-Ion Batteries, Acs Sustainable Chemistry & Engineering 8(26) (2020) 9857-9865. https://doi.org/10.1021/acssuschemeng.0c02843. |
[29] | M. Wang, J. Wang, A. Wei, X. Li, W. Zhang, Y. Liu, Highly stable aqueous carbon-based conductive ink for screen-printed planar flexible micro-supercapacitor, Journal of Alloys and Compounds 976 (2024). https://doi.org/10.1016/j.jallcom.2023.173125. |
[30] | Y.-R. Chen, L.-Y. Chen, C.-Y. Chung, Y.-H. Su, F.-Y. Wu, T.-M. Hsu, P.W. Chi, P.M. Wu, K.-S. Chang-Liao, H.-Y. Tang, M.-K. Wu, Enhanced electrochemical performance of a LiFePO4 cathode with an environmentally friendly pectin/polyethylene glycol binder, Journal of Power Sources 613 (2024). https://doi.org/10.1016/j.jpowsour.2024.234861. |
[31] | G. Xi, Z. Zhang, L. Zhong, S. Wang, M. Xiao, D. Han, S. Huang, Y. Meng, Novel Aliphatic polycarbonate binders for Solvent-free manufacturing High-loading cathodes of high-performance lithium-ion batteries, Chemical Engineering Journal 485 (2024). https://doi.org/10.1016/j.cej.2024.149983. |
[32] | X. Liu, H. Zhao, J. Xie, P. Lv, K. Wang, J. Cui, SiOx (0<x≤2) Based Anode Materials for Lithium-Ion Batteries, Progress in Chemistry 27(4) (2015) 336-348. https://doi.org/10.7536/pc141010. |
[33] | J. Duan, K. Kang, P. Li, W. Zhang, X. Li, J. Wang, Y. Liu, The design and regulation of porous silicon-carbon composites for enhanced electrochemical lithium storage performance, Journal of Industrial and Engineering Chemistry 131 (2024) 410-421. https://doi.org/10.1016/j.jiec.2023.10.043. |
[34] | J. Yu, C. Zhang, W. Wu, Y. Cai, Y. Zhang, Nodes-connected silicon-carbon nanofibrous hybrids anodes for lithium-ion batteries, Applied Surface Science 548 (2021) 148944. https://doi.org/10.1016/j.apsusc.2021.148944. |
[35] | A. Sun, H. Zhong, X. Zhou, J. Tang, M. Jia, F. Cheng, Q. Wang, J. Yang, Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries, Applied Surface Science 470 (2019) 454-461. https://doi.org/10.1016/j.apsusc.2018.11.117. |
[36] | A. Ghamlouche, M. Mueller, F. Jeschull, J. Maibach, Degradation Phenomena in Silicon/Graphite Electrodes with Varying Silicon Content, Journal of the Electrochemical Society 169(2) (2022). https://doi.org/10.1149/1945-7111/ac4cd3. |
[37] | M. Wang, F. Xi, S. Li, W. Ma, X. Wan, Z. Tong, B. Luo, ZIF-67-derived porous nitrogen-doped carbon shell encapsulates photovoltaic silicon cutting waste as anode in high-performance lithium-ion batteries, Journal of Electroanalytical Chemistry 931 (2023). https://doi.org/10.1016/j.jelechem.2023.117210. |
[38] | W. Zhang, K. Kang, J. Duan, P. Li, R. Zhang, J. Wang, Y. Liu, High content pyridine nitrogen-doped carbon nanosheets derived from ZIF-L as anode materials of lithium-ion batteries with excellent capacity and rate performance, Journal of Alloys and Compounds 992 (2024). https://doi.org/10.1016/j.jallcom.2024.174591. |
[39] | Z. Cheng, P. Pan, L. Jiang, J. Mao, C. Ni, Z. Wang, M. Zhang, Y. Zhang, Y. Yu, X. Zhai, Y. Hu, Dual structure engineering of SiOx-acrylic yarn derived carbon nanofiber based foldable Si anodes for low-cost lithium-ion batteries, Journal of Colloid and Interface Science 628 (2022) 530-539. https://doi.org/10.1016/j.jcis.2022.07.186. |
[40] | W. Zhang, H. Shi, C. Wang, J. Wang, Z. Wang, H. Jiang, Z. Xiong, Z. Wang, Z. Bai, X. Yan, Synthesizing copper-doped silicon/carbon composite anode as cost-effective active materials for Li-ion batteries, Journal of Physics and Chemistry of Solids 179 (2023). https://doi.org/10.1016/j.jpcs.2023.111387. |
[41] | J. Feng, M. Hou, Q. Zhang, D. Wang, Z. Li, J. Liu, Y. Wu, L. Wang, Constructing practical micron silicon anodes via a homogeneous and robust network binder induced by a strong-affinity inorganic oligomer, Journal of Colloid and Interface Science 634 (2023) 621-629. https://doi.org/10.1016/j.jcis.2022.12.049. |
[42] | J. Duan, K. Kang, P. Li, W. Zhang, X. Li, J. Wang, Y. Liu, The design and regulation of porous silicon-carbon composites for enhanced electrochemical lithium storage performance, Journal of Industrial and Engineering Chemistry 131 (2024) 410-421. https://doi.org/10.1016/j.jiec.2023.10.043. |
[1] | 冯军胜, 严亚茹, 王璐, 赵亮, 董辉. 耦合低温余热的HP-ORC热泵储电系统热经济性能研究[J]. 储能科学与技术, 2025, 14(5): 2130-2140. |
[2] | 李亚捷, 王依平, 陈斌, 林海龙, 张更, 施思齐. 机器学习辅助相场模拟预测锂离子输运参数对电池枝晶最大生长高度和空间利用率的影响[J]. 储能科学与技术, 2024, 13(9): 2864-2870. |
[3] | 李想, 刘德重, 袁开, 陈大鹏. 用于低温锂金属电池的固态电解质技术研究进展[J]. 储能科学与技术, 2024, 13(7): 2327-2347. |
[4] | 姜媛媛, 屠芳芳, 张芳平, 王盈来, 蔡佳文, 杨东辉, 李艳红, 相佳媛, 夏新辉, 傅继澎. 高性能磷酸铁锂电池补锂技术及机制[J]. 储能科学与技术, 2024, 13(5): 1435-1442. |
[5] | 冯军胜, 严亚茹, 王璐, 赵亮, 董辉. 耦合低温余热回收的热泵储电系统热力学性能研究[J]. 储能科学与技术, 2024, 13(12): 4384-4395. |
[6] | 邢学奇, 宋鹏翔, 申爱景, 鲁仰辉, 陈俊, 刘伟. 电解水制氢用阴离子交换膜研究进展[J]. 储能科学与技术, 2024, 13(11): 3856-3870. |
[7] | 陈珊珊, 郑翔, 王若, 原铭蔓, 彭威, 鲁博明, 张光照, 王朝阳, 王军, 邓永红. 锂离子电池硅基负极电解液添加剂研究进展:挑战与展望[J]. 储能科学与技术, 2024, 13(1): 279-292. |
[8] | 赵争光, 陈振营, 翟光群, 张希, 庄小东. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. |
[9] | 牛少军, 吴凯, 朱国斌, 王艳, 曲群婷, 郑洪河. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9): 2989-2994. |
[10] | 张斌伟, 魏子栋, 孙世刚. 室温钠硫电池硫化钠正极的发展现状与应用挑战[J]. 储能科学与技术, 2022, 11(9): 2811-2824. |
[11] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[12] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[13] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[14] | 周思飞, 李骏, 王小飞, 张道明, 薛浩亮. 锂电池电解液电导率模型研究进展[J]. 储能科学与技术, 2022, 11(11): 3688-3698. |
[15] | 张林森, 王士奇, 王利霞, 宋延华. PEO基Li+-g-C3N4 复合固态电解质的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3463-3469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||