• XXXX •
收稿日期:
2025-07-31
修回日期:
2025-09-23
通讯作者:
蒋利红
E-mail:jianglh0219@163.com
作者简介:
蒋利红(1994—),女,博士,柔性储能器件及其原理,E-mail:jianglh0219@163.com;
基金资助:
Lihong JIANG1,2(), Yancong XUN1,2, Xiaoquan ZHU1,2
Received:
2025-07-31
Revised:
2025-09-23
Contact:
Lihong JIANG
E-mail:jianglh0219@163.com
摘要:
随着可穿戴电子设备向轻量化、集成化的方向迅速发展,高性能柔性锂离子电池(FLIB)的开发和应用成为储能领域的前沿热点。在众多柔性基底材料中,纺织材料具有优异的力学柔韧性及尺寸稳定性,为提升FLIB在形变状态下的电化学稳定性、安全性提供一种理想的基材选择;并且纺织材料独特的微观多孔结构不仅有利于电解质的快速浸润和离子传输,还能够显著提高电极活性物质负载量,从而优化电池能量密度,在柔性储能领域表现出显著的应用优势。本文针对近年关于纺织基FLIB的研究现状,总结了其结构分类及常用制备方法,其中根据纺织基FLIB的结构形态可以分为一维纤维/线缆状和二维织物状两类,常用的制备方法包括涂覆法、原位生长法、纺丝法和3D打印法等,探讨不同结构形态及制备方法的优缺点并剖析对FLIB性能的影响,接着介绍了可拉伸纺织基FLIB的研究进展,最后阐述了目前纺织基FLIB在研究和规模化应用过程中存在的问题,并对其未来发展进行展望。
中图分类号:
蒋利红, 荀艳聪, 朱晓泉. 纺织基柔性锂离子电池的研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0693.
Lihong JIANG, Yancong XUN, Xiaoquan ZHU. Research progress of textile-based flexible lithium-ion batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0693.
图2
(a)MoS2/PANi/CF复合材料的合成示意图[26];(b)Sn@Ni@cotton和Bi@Ni@cotton织物电极制备流程示意图[27];(c)SCF-SBC 的制造过程包括阴极和阳极CF电极的制备、带隔膜的电极叠层设计以及最终的SCF-SBC组装[28];注:Fig.2(a)Schematic illustration of the synthesis of MoS2/PANi/CF composite material.(b)Schematic illustration of the preparation process of Sn@Ni@cotton and Bi@Ni@cotton textile electrodes.(c) The fabrication process of SCF-SBC includes the preparation of cathode and anode CF electrodes, the design of electrode stack with a separator, and the final assembly of SCF-SBC."
表1
纺织基柔性电极的常用制备工艺对比"
制备方法 | 核心原理 | 核心优势 | 应用场景 | 主要局限性 |
---|---|---|---|---|
涂覆法 | 将活性材料、导电剂、粘结剂制成浆料,通过刮刀/辊涂负载于纺织基底,干燥固化 | 1. 工艺成熟且规模化适配性强 2. 材料兼容性广 3. 成本可控性高 | 智能服装、民用充电宝等规模化量产场景;需灵活切换活性材料的定制化生产 | 界面结合力弱,活性材料易剥落;高负载量时涂覆不均匀;大形变下易开裂 |
原位生长法 | 通过水热、电沉积等手段,使活性材料在纺织基底表面直接成核生长,形成一体化结构 | 1. 界面稳定性与柔性较高 2. 体积膨胀缓冲能力强 | 可折叠智能屏、植入式医疗电子纺织品等高柔性、长寿命需求场景 | 工艺复杂,生产质量差异大;材料适配有限(适用于金属氧化物、导电聚合物等);成本高 |
纺丝法 | 活性材料、碳源、高分子聚合物载体混合制成纺丝液,经静电 / 熔融纺丝形成纤维电极 | 1. 纤维状结构高度适配纺织集成 2. 多孔网络结构利于离子传输 3. 可编织性强 | 可穿戴手环、智能背包等纤维基纺织集成场景;需多孔结构调控的快充式储能设备 | 活性材料负载受限;纺丝环境要求严苛;纯纤维电极力学强度低 |
3D打印法 | 基于直写技术,将复合电极墨水按预设路径打印成型,溶剂交换固化后形成电极 | 1. 异形结构精准打印与定制 2. 梯度结构性能可实现按需设计 3. 多单元集成灵活性高 | 小型柔性储能设备、智能眼镜等异形电极定制场景;梯度性能或结构设计的复杂电子设备 | 打印电极墨水的配方要求严苛,需满足可打印直写的粘度与流变性能;量产效率低 |
[1] | GAO M, LI L H, SONG Y L. Inkjet printing wearable electronic devices[J]. Journal of Materials Chemistry C, 2017, 5(12): 2971-2993. |
[2] | HUANG B, WANG Q, LI W, et al. Stretchable and body conformable electronics for emerging wearable therapies[J]. Interdisciplinary Medicine, 2025, 3(1): e20240064. |
[3] | WEI Y, WANG M, ZHANG M, et al. Advancements, Challenges, and Future Trajectories in Advanced Battery Safety Detection[J]. Electrochemical Energy Reviews, 2025, 8(1): 10. |
[4] | CHEN G J, TAN R, ZENG C, et al. Developing safe and high-performance lithium-ion batteries: Strategies and methods[J]. Progress in Materials Science, 2025, 154: 101516. |
[5] | WU Y, HE J, YANG L, et al. Multiscale and multiphysics theoretical model and computational method for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2141-2154. |
[6] | LI H W, XU P, GUO Y C, et al. High-performance and recyclable paper-based LiFePO4 electrodes prepared by papermaking process[J]. Materials Today Communications, 2025, 44: 112141. |
[7] | CHEN D, LI H, LIU M, et al. In situ N-doped carbon nanofiber paper-based 3D anode materials for highly flexible lithium-ion batteries[J]. Journal of Alloys and Compounds, 2024, 993: 174673. |
[8] | RIYANTO E. Atomic layer deposition on flexible polymeric materials for lithium-ion batteries[J]. RSC Advances, 2025, 15(16): 12382-12401. |
[9] | JIANG L, ZANG G J, LIU X, et al. Nylon binder enables high-performance flexible ultra-thick electrode preparation in a water-based environment[J]. Journal of Materials Chemistry A, 2024, 12(22): 13299-13309. |
[10] | HUANG Y, HU H, HUANG Y, et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles[J]. Acs Nano, 2015, 9(5): 4766-4775. |
[11] | MARRIAM I, TEBYETEKERWA M, Xu Z, et al. Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries[J]. Energy Storage Materials, 2021, 43: 62-84. |
[12] | JIRANKALAGI S N, MOLANE A C, MULIK R N, et al. Enhanced performance of 1D ZnMn2O4 nanofibers for symmetric supercapacitor device[J]. Inorganic Chemistry Communications, 2025, 174(2): 114057. |
[13] | GU H, LEI Q, LIU Y Z, et al. Stress-induced volume expansion suppression in silicon films on carbon nanotubes grown on carbon fibers for ultrahigh-stability flexible lithium-ion battery anodes[J]. Carbon, 2025, 238: 120240. |
[14] | LUO L, SHI N, LU D K, et al. Flexible and free-standing MXene decorated biomass-derived carbon cloth membrane anodes for superior lithium-ion capacitors[J]. Journal of Energy Storage, 2024, 103(B): 114430. |
[15] | WANG N, FEI J, ZHENG X H, et al. Self-Supported Carbon Cloth-based Materials as Flexible Lithium/Sodium-ion Battery Anodes: a Review[J]. Materials Review, 2023, 37(2B): 20090256. |
[16] | YONG E, NAM D, KIM Y, et al. An electrochemically active textile current collector with a high areal capacity and a strong energy recovery effect using an interfacial interaction assembly[J]. Energy Storage Materials, 2023, 60: 102813. |
[17] | SHUAI L Z, GUO Z H, ZHANG P P, et al. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles[J]. Nano Energy, 2020, 78: 105389. |
[18] | HE J, LU C, JIANG H, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature, 2021, 597: 57-63. |
[19] | 陈扬, 吕鹏. 一种高线能量密度的纤维状锂离子电池[J]电源技术, 2024, 48(09): 1704-1712. |
CHEN Y, LV P. A High Linear Energy Density Fiber-Shaped Lithium-Ion Battery[J]. Power Technology, 2024, 48(09): 1704-1712. | |
[20] | CHENG X R, LU C H, GONG X C, et al. Quasi-solid fiber-shaped lithium-ion batteries with fire resistance[J]. Angewandte Chemie International Edition, 2025, 64(16): e202423419. |
[21] | ZHANG X J, XU Z M, Kong S, et al. Nanoflowers-like LiTi2(PO4)3 on carbon nanotube fibers as novel binder-free anodes for high-performance fiber-shaped aqueous rechargeable lithium-ion batteries[J]. Journal of Energy Storage, 2023, 64: 107249. |
[22] | MARRIAM I, TEBYETEKERWA M, CHATHURANGA H, et al. Nickel-Rich Cathode Yarn for Wearable Lithium-Ion Batteries[J]. Advanced Fiber Materials, 2024, 6: 341–353. |
[23] | YADAV A, DE B, SINGH S K, et al. Facile development strategy of a single carbon-fiber-based all-solid-state flexible lithium-ion battery for wearable electronics[J]. Acs Applied Materials & Interfaces, 2019, 11(8): 7974-7980. |
[24] | MUNIRAJ V K A, DELATTRE R, SAADAOUI M, et al. High Performance Stretchable Wire Li-Ion Batteries[J]. Advanced Materials Technologies, 2024, 9(21): 2302117. |
[25] | MA Y W, LI P, SEDLOFF J W, et al. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes[J]. Acs Nano, 2015, 9(2): 1352-1359. |
[26] | LINGAPPAN N, JEON I, LEE W. Interface engineering driven molybdenum disulfide coupled polyaniline functionalized carbon fabric with high mass loading anode for fiber lithium-ion batteries[J]. Journal of Alloys and Compounds, 2024, 979: 173611. |
[27] | CUI Z N, GUO S W, LIU X, et al. A general fabrication strategy for flexible metal anodes based on Ni-encapsulated cotton substrates via galvanic replacement toward high-performance lithium storage[J]. Journal of Power Sources, 2025, 652: 237607. |
[28] | TIAN L, JI X, ZHAO L, et al. Enhanced performance of structural battery composites through carbon fiber electrode/current collector integration[J]. Composites Part A: Applied Science and Manufacturing, 2025, 198: 109065. |
[29] | TADESSE M G, LOGHIN C, DULGHERIU I, et al. Comfort Evaluation of Wearable Functional Textiles[J]. Materials, 2021, 14(21): 6466. |
[30] | HONG S Y, JEE S M, KO, Y, et al. Intrinsically Stretchable and Printable Lithium-Ion Battery for Free-Form Configuration [J]. ACS Nano, 2022, 16(2): 2271-2281. |
[31] | LI J X, LIU X, HU Z H, et al. Interface reinforced by polymer binder for expandable carbon fiber structural lithium-ion battery composites [J]. Composites Science and Technology, 2024, 258: 110873. |
[32] | HU L B, WU H, LA MANTIA F, et al. Thin, flexible secondary li-ion paper batteries[J]. Acs Nano, 2010, 4(10): 5843-5848. |
[33] | CHEN C, RAN C, YAO Q, et al. Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells[J]. Advanced Science, 2023, 10(28): e2303992. |
[34] | ELBARADAI O, BENEVENTI D, ALLOIN F, et al. Microfibrillated cellulose based ink for eco-sustainable screen-printed flexible electrodes in lithium-ion batteries[J]. Journal of Materials Science & Technology, 2016, 32(6): 566-572. |
[35] | ESKANDARI P, ABOUSALMAN-REZVANI Z, ROGHANI-MAMAQANI H, et al. Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations[J]. Advances in Colloid and Interface Science, 2021, 294: 102471. |
[36] | WANG S K, WU S, SONG Y C, et al. Regulating electrochemical performances of lithium battery by external physical field[J]. Rare Metals, 2024, 43: 2391–2417. |
[37] | ZHANG X, LAN X, FENG Y, et al. Boosting Li-Ion Storage Capability of Self-Standing Ni-Doped LiMn2O4 Nanowall Arrays as Superior Cathodes for High-Performance Flexible Aqueous Rechargeable Li-Ions Batteries[J]. Advanced Materials Interfaces, 2023, 10(4): 2202035. |
[38] | LEE, S H, JEONG B J, CHOI K H, et al. Liquid-phase intermediated chemical vapor deposition for ternary compositional 1D van der Waals material Nb2Pd3Se8[J]. CrystEngComm, 2024, 26(33): 4541-4550. |
[39] | LUO C, WEN S, HU H, et al. Bamboo mat-inspired interlocking compact textile electrodes for high-energy-density flexible lithium-ion full batteries[J]. Energy Storage Materials, 2023, 55: 388-396. |
[40] | QI X F, ZHANG F, CHEN Z P, et al. Hydrothermal synthesis of stable lead - free Cs4MnBi2Cl12 perovskite single crystals for efficient photocatalytic degradation of organic pollutants[J]. Journal of Materials Chemistry C, 2023, 11(11): 3715 - 3725. |
[41] | MIN X, SUN B, CHEN S, et al. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries[J]. Energy Storage Materials, 2019, 16: 597-606. |
[42] | XING LA, YANG F, ZHONG X, et al. Ultra-microporous cotton fiber-derived activated carbon by a facile one-step chemical activation strategy for efficient CO2 adsorption[J]. Separation and Purification Technology, 2023, 324: 124470. |
[43] | LI Q, LU T Y, WANG L L, et al. Biomass based N-doped porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes[J]. Separation and Purification Technology, 2021, 275: 119204. |
[44] | LIU X, JI H C, PENG B, et al. Cotton textile-derived MoS2@reduced graphene oxide anode for high-rate capability and long-cycle stability sodium/lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2023, 10(1): 267-279. |
[45] | LEE J G, KWON Y, JU J Y, et al. Fiber electrode byone-pot wet-spinning of graphene and manganese oxide nanowires for wearable lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2017, 47(8): 865-875. |
[46] | WANG R, LI Y, ZHANG H, et al. High-light-transmittance MFI zeolite films fabricated by solvothermal secondary growth [J]. Cryst Growth Des, 2024, 24: 2938–2946. |
[47] | ZHANG X, YANG Y H, Y J G, et al. Zn-MOF-74 and polyacrylonitrile derived Si/C/CNFs flexible composites as anode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2025, 1035: 181577. |
[48] | LI Y, ZHANG D, YANG S, et al. Flexible Li3VO4/NC nanoribbons for lithium-ion storage with remarkable cycling performance[J]. Ionics, 2025, 31: 5399–5410. |
[49] | ASLAM J, SALEEM A, LAI K-H, et al. Critical success factors for the adoption of additive manufacturing: Integrated impact for circular economy model[J]. Technological Forecasting and Social Change, 2025, 213: 124041. |
[50] | NAGHSHINEH B, CARVALHO H. Exploring the effects of additive manufacturing technology adoption on the state of the supply chain: a resilience perspective[J]. Operations Management Research, 2025, 18: 495–517. |
[51] | ZHAO C, WANG R, LIANG H, et al. Autonomous self-healing strategy for flexible fiber lithium-ion battery with ultra-high mechanical properties and volumetric energy densities[J]. Chemical Engineering Journal, 2024, 496: 154153. |
[52] | MORADI G B, HEKMATNIA B, Fu Q, et al. Stretchable fabric-based lithium-ion battery[J]. Extreme Mechanics Letters, 2023, 61: 102026. |
[53] | LEE J, MOON J, LEE K H, et al. Stretchable coaxial gel polymer electrolyte based on a styrene-ethylene-butylene-styrene block copolymer nanofiber for stretchable lithium-ion batteries[J]. ACS Applied Polymer Materials, 2024, 6(10): 12964-12972. |
[54] | REN J, ZHANG Y, BAI W Y, et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance[J]. Angewandte Chemie-International Edition, 2014, 53(30): 7864-7869. |
[1] | 王晓鹏, 张修澳, 赵红霞, 孙秋艳, 张浩, 辛公明, 柏超. 燃煤电厂耦合储能系统的热力学分析[J]. 储能科学与技术, 2025, 14(9): 3509-3520. |
[2] | 李莹, 刘淑丽, 邹煜良, 王义函, 陈廷森, 沈永亮. 释能过程沸石填充式热化学反应器热性能参数敏感性分析[J]. 储能科学与技术, 2025, 14(9): 3330-3339. |
[3] | 辛传奇, 王文权, 陈伟, 周练武, 刘继芹, 解恺, 安金彪, 马涛, 熊昊天. 压缩空气储能技术多维度应用与发展路径分析[J]. 储能科学与技术, 2025, 14(9): 3636-3647. |
[4] | 郑彦霖, 郭欢, 尹钊, 徐玉杰, 张华良, 陈海生. 微型压缩空气储能热电联供系统变负荷运行特性[J]. 储能科学与技术, 2025, 14(9): 3488-3499. |
[5] | 王锦峰, 刘悦, 钟鸿杰, 曹峻鸣, 吴兴隆. 钼基电极材料的电化学储能应用进展[J]. 储能科学与技术, 2025, 14(9): 3340-3353. |
[6] | 王凯亮, 孙宇军, 钟锦星, 苏向阳, 李俊辉, 刘宗扬, 蔡煜, 陈艺丹. 考虑储能寿命和经验模态分解的区域配电网混合储能配置[J]. 储能科学与技术, 2025, 14(9): 3417-3430. |
[7] | 林季锦, 刘倩, 曲涛, 李京鲲, 黄东永, 朱晓庆, 巨星. 锂离子电池储能系统浸没液冷的技术经济性分析[J]. 储能科学与技术, 2025, 14(9): 3622-3635. |
[8] | 徐成善, 李涵, 王炎, 卢兰光, 冯旭宁, 欧阳明高. 双层储能电池火蔓延特性及触发过程能量传递机制研究[J]. 储能科学与技术, 2025, 14(9): 3552-3563. |
[9] | 李承晨, 余庆华, 代慧涛, 贾娜, 王琳, 孙彬博. 基于SrBr2·6H2O的封闭式热化学反应器储/放能特性模拟研究[J]. 储能科学与技术, 2025, 14(9): 3319-3329. |
[10] | 艾立旺, 王伟伟, 蒋思远, 封海潮, 肖磊, 许孝卓. 直线电机重力储能系统充放电策略优化[J]. 储能科学与技术, 2025, 14(9): 3476-3487. |
[11] | 刘明轩, 陈文涛, 申韶鹏, 张世杰, 韦振, 马彪, 李丹华, 刘仕强, 王芳. 储能用锂离子电池加速老化及老化后安全特性研究[J]. 储能科学与技术, 2025, 14(9): 3530-3537. |
[12] | 赵峰, 杨明成, 郝宁, 陈东, 刘佳, 陈逸伦. 压缩空气储能系统透平负荷控制策略的研究与仿真实现[J]. 储能科学与技术, 2025, 14(9): 3500-3508. |
[13] | 张子澳, 王星宇, 路新亮, 殷勇高, 王晨. 面向液态空气储能的新型径向流储冷填充床性能研究[J]. 储能科学与技术, 2025, 14(9): 3311-3318. |
[14] | 杨优军, 马建, 孙杰. 基于大数据与人工智能的光伏储能系统智能运维研究[J]. 储能科学与技术, 2025, 14(9): 3414-3416. |
[15] | 宋娟. 飞轮储能控制技术在新能源风力发电系统中的应用[J]. 储能科学与技术, 2025, 14(9): 3431-3433. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||