[1]孟翔宇, 陈铭韵, 顾阿伦, 等. "双碳"目标下中国氢能发展战略 [J]. 天然气工业, 2022, 42(04): 156-79. [百度学术]MENG X, CHEN M, GU A, et al. China's hydrogen development strategy in the context of double carbon targets [J]. Natural Gas Industry, 2022, 42(04): 156-79. [百度学术]
[2]MICHAEL B, MARTIN W. The future of hydrogen–opportunities and challenges [J]. Int J Hydrog Energy, 2009, 34(2): 615-27. [百度学术]
[3]李敬法, 李建立, 王玉生, 等. 氢能储运关键技术研究进展及发展趋势探讨 [J]. 油气储运, 2023, 42(8): 856-71. [百度学术]LI J, LI J, WANG Y, et al. Research progress and development trends of key technologies for hydrogenenergy storage and transportation [J]. Oil & Gas Storage and Transportation, 2023, 42(8): 856-71. [百度学术]
[4]MUTHUKUMAR P, KUMAR A, AFZAL M, et al. Review on large-scale hydrogen storage systems for better sustainability [J]. Int J Hydrog Energy, 2023, 48(85): 33223-59. [百度学术]
[5]冯展博, 孟凡玉. 氢能储运技术优缺点比较分析及未来发展探讨 [J]. 能源技术与管理, 2023, 48(04): 30-3. [百度学术]FENG Z, MENG F. Comparative analysis and future development discussion on hydrogen energy storage and transportationt [J]. Energy Technology and Managementechnology, 2023, 48(04): 30-3. [百度学术]
[6]张仲军, 金子儿, 曾玥, 等. 我国氢能规模化储运方式经济性分析 [J]. 中国能源, 2023, 45(12): 27-37. [百度学术]ZHANG Z, JIN Z, ZENG Y, et al. Economic analysis of large-scale hydrogen energy storage and transportation in China [J]. Energy of China, 2023, 45(12): 27-37. [百度学术]
[7]Gev scoping study delivers zero emission supply chain for green hydrogen [R]: Global Energy Ventures, 2021-03-01. [百度学术]
[8]D'AMORE-DOMENECH R, LEO T, POLLET B. Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors [J]. Applied Energy, 2021, 288: 116625. [百度学术]
[9]COMER B, GEORGEFF E, STOLZ D, et al. Decarbonizing bulk carriers with hydrogen fuel cells and wind-assisted propulsion: A modeled case study analysis [R]: International Council on Clean Transportation, 2022-01-10. [百度学术]
[10]RIVARD E, TRUDEAU M, ZAGHIB K. Hydrogen storage for mobility: a review [J]. Materials, 2019, 12(12): 1973. [百度学术]
[11]Onboard Type IV Compressed Hydrogen Storage System - Cost and Performance Status [R]: U.S. Department of Energy, 2025-04-28. [百度学术]
[12]ZHOU L. Progress and problems in hydrogen storage methods [J]. Renewable and Sustainable Energy Reviews, 2005, 9(4): 395-408. [百度学术]
[13]王惠颖. 氢气长输管道技术现状分析 [J]. 机电产品开发与创新, 2025, 38(04): 80-2. [百度学术]WANG H. Analysis of the Current Situation of Hydrogen Long-distance Pipeline Technology [J]. Development & Innovation of Machinery & Electrical Products, 2025, 38(04): 80-2. [百度学术]
[14]陈昌华, 贺杨, 李春洋, 等. 高压加氢闸阀的失效模式分析及研究 [J]. 阀门, 2024, 08: 990-3. [百度学术]CHEN C, HE Y, LI C, et al. Failure Analysis and Improvement Plan of High-Pressure Hydrogenation Gate Valve [J]. Chinese Journal of Valve, 2024, 08: 990-3. [百度学术]
[15]Natural Gas with Hydrogen Pipeline Cost Model (2024): Model Results and Comparative Analysis [R]: U.S. Department of Energy, Office of Fossil Energy and Carbon Management (FECM), 2024-06-28. [百度学术]
[16]刘晓杰, 刘峻, 韩文杰, 等. 储氢技术研究进展及挑战与机遇 [J]. 现代化工, 2025, 45(08): 79-84+9. [百度学术]LIU X, LIU J, HAN W, et al. An overview of hydrogen storage technologies:Research progress,challenges,and opportunities [J]. Modern Chemical Industry, 2025, 45(08): 79-84+9. [百度学术]
[17]刘彪, 白海强, 康玲, 等. 固态储氢材料研究进展 [J]. 低碳化学与化工, 2025, 50(07): 125-35+44. [百度学术]LIU B, BAI H, KANG L, et al. Research progress on solid hydrogen storage materials [J]. Low-Carbon Chemistry and Chemica Engineering, 2025, 50(07): 125-35+44. [百度学术]
[18]吕翠, 王金阵, 朱伟平, 等. 氢液化技术研究进展及能耗分析 [J]. 低温与超导, 2019, 47(07): 11-8. [百度学术]LV C, WANG J, ZHU W, et al. Research progress and energy consumption analysis of hydrogen liquefaction technology [J]. Cryogenics & Superconductivity, 2019, 47(07): 11-8. [百度学术]
[19]MACHAJ K, KUPECKI J, MALECHA Z, et al. Ammonia as a potential marine fuel: A review [J]. Energy Strategy Reviews, 2022, 44: 100926. [百度学术]
[20]熊景阳, 贺星, 梁前超. 船舶领域氨制氢技术研究进展 [J]. 舰船电子工程, 2023, 43(11): 18-20+6. [百度学术]XIONG J, HE X, LIANG Q. Research progress of ammonia hydrogen production technology in ship field [J]. Ship Electronic Engineering, 2023, 43(11): 18-20+6. [百度学术]
[21]WU C, JIN Y, FAN Y, et al. Membrane reactor supported by MXene (Ti3C2T X) for hydrogen production by ammonia decomposition [J]. Energy & Fuels, 2023, 37(13): 9760-9. [百度学术]
[22]王明华. 氢能储运技术经济性分析及建立绿氨储运基地设想 [J]. 现代化工, 2023, 43(06): 1-5. [百度学术]WANG M. Economic analysis on hydrogen energy storage and transportation technologies andtentative plan in establishing a green ammonia storage-transportation base [J]. Modern Chemical Industry, 2023, 43(06): 1-5. [百度学术]
[23]JORSCHICK H, GEIßELBRECHT M, EßL M, et al. Benzyltoluene/dibenzyltoluene-based mixtures as suitable liquid organic hydrogen carrier systems for low temperature applications [J]. Int J Hydrog Energy, 2020, 45(29): 14897-906. [百度学术]
[24]ABDIN Z, TANG C, LIU Y, et al. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers [J]. Iscience, 2021, 24(9). [百度学术]
[25]WULF C, ZAPP P. Assessment of system variations for hydrogen transport by liquid organic hydrogen carriers [J]. Int J Hydrog Energy, 2018, 43(26): 11884-95. [百度学术]
[26]邢承治, 赵明, 尚超, 等. 有机液体载氢储运技术研究进展及应用场景 [J]. 储能科学与技术, 2024, 13(02): 643-51. [百度学术]XING C, ZHAO M, SHANG C, et al. Research progress and application scenarios of storage and transportation technology with liquid organic hydrogen carrier [J]. Energy Storage Science and Technology, 2024, 13(02): 643-51. [百度学术]
[27]石利斌, 彭东岳, 李云鹏, 等. 有机液体储氢体系以及脱氢催化剂研究进展 [J]. 石油学报(石油加工), 2025, 41(01): 89-103. [百度学术]SHI L, PENG D, LI Y, et al. Research Progress of Liquid Organic Hydrogen Carrier System and Dehydrogenation Catalysts [J]. Acta Petrolei SinicaPetroleum Processing, 2025, 41(01): 89-103. [百度学术]
[28]YANG M, DONG Y, FEI S, et al. A comparative study of catalytic dehydrogenation of perhydro-N-ethylcarbazole over noble metal catalysts [J]. Int J Hydrog Energy, 2014, 39(33): 18976-83. [百度学术]
[29]ZHOU Y, QI S, TAN X, et al. Regulating the Pt dispersion by increasing the specific surface area of Al2O3 support for perhydro-dibenzyltoluene catalytic dehydrogenation reaction [J]. Int J Hydrog Energy, 2024, 57: 52-9. [百度学术]
[30]TUO Y, MENG Y, CHEN C, et al. Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity [J]. Applied Catalysis B: Environmental, 2021, 288: 119996. [百度学术]
[31]SHI L, ZHOU Y, TAN X, et al. Dielectric barrier discharge plasma grafting carboxylate groups on Pt/Al 2 O 3 catalysts for highly efficient hydrogen release from perhydro-dibenzyltoluene [J]. Catal Sci Technol, 2022, 12(5): 1441-9. [百度学术]
[32]MURATA K, KURIMOTO N, YAMAMOTO Y, et al. Structure–property relationships of Pt–Sn nanoparticles supported on Al2O3 for the dehydrogenation of methylcyclohexane [J]. ACS Applied Nano Materials, 2021, 4(5): 4532-41. [百度学术]
[33]MERCHANT A, BATZNER S, SCHOENHOLZ S, et al. Scaling deep learning for materials discovery [J]. Nature, 2023, 624(7990): 80-5. [百度学术]
[34]CHU C, WU K., LUO B, et al. Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology - A review [J]. Carbon Resources Conversion, 2023. [百度学术]
[35]李默宇, 梁胜彪, 孟庆云, 等. 碳纤维湿法缠绕用高模量高韧性环氧树脂基体 [J]. 玻璃钢/复合材料, 2009, 02: 72-7. [百度学术]LI M, LIANG S, MENG Q, et al. TOUGHNESS EPOXY RESIN WITH HIGH MODULUS FOR CARBON FIBER WET FILAMEMT WINDING [J]. Composites Science and Engineering, 2009, 02: 72-7. [百度学术]
[36]罗渊, 刘强, 王源鑫, 等. 空心玻璃微球储氢研究进展 [J]. 功能材料, 2023, 54(06): 6011-20. [百度学术]LUO Y, LIU Q, WANG Y, et al. Recent development of hydrogen storage in hollow glass microspheres [J]. Journal of Functional Materials, 2023, 54(06): 6011-20. [百度学术]
[37]ARIHARAN A, VISWANATHAN B, NANDHAKUMAR V. Nitrogen-incorporated carbon nanotube derived from polystyrene and polypyrrole as hydrogen storage material [J]. Int J Hydrog Energy, 2018, 43(10): 5077-88. [百度学术]
[38]王奥诚, 王春雅, 徐春明, 等. 液态有机氢载体体系及其加氢-脱氢催化剂研究进展 [J]. 石油学报(石油加工), 2025, 1-18. [百度学术]WANG A, WANG C, XU C, et al. Research Progress in Liquid Organic Hydrogen Carrier Systems and Their Hydrogenation-Dehydrogenation Catalysts [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2025, 1-18. [百度学术]
[39]TSOGT N, GBADAGO D, HWANG S. Exploring the potential of liquid organic hydrogen carrier (LOHC) system for efficient hydrogen storage and Transport: A Techno-Economic and energy analysis perspective [J]. Energy Conversion and Management, 2024, 299. [百度学术]
[40]RONG Y, CHEN S, LI C, et al. Techno-economic analysis of hydrogen storage and transportation from hydrogen plant to terminal refueling station [J]. Int J Hydrog Energy, 2024, 52: 547-58. [百度学术]
[41]LINDFORS L, SALMI T, SMEDS S. Kinetics of toluene hydrogenation on Ni/Al2O3 catalyst [J]. Chemical Engineering Science, 1993, 48(22): 3813-28. [百度学术]
[42]HAMAYUN M, HUSSAIN M, MAAFA I, et al. Integration of hydrogenation and dehydrogenation system for hydrogen storage and electricity generation–simulation study [J]. Int J Hydrog Energy, 2019, 44(36): 20213-22. [百度学术]
[43]SHI J, BAI X. In situ preparation of ultrafine Ru nanocatalyst supported on nitrogen‐doped layered double hydroxide by nitrogen glow discharge plasma for catalytic hydrogenation of N‐ethylcarbazole [J]. Applied Organometallic Chemistry, 2020, 34(9): e5777. [百度学术]
[44]DONG Y, YANG M, ZHU T, et al. Fast dehydrogenation kinetics of perhydro-N-propylcarbazole over a supported Pd catalyst [J]. ACS Applied Energy Materials, 2018, 1(8): 4285-92. [百度学术]
[45]EBERLE U, FELDERHOFF M, SCHüTH F. Chemical and physical solutions for hydrogen storage [J]. Angewandte Chemie International Edition, 2009, 48(36): 6608-30. [百度学术]
[46]GODINHO J, HOEFNAGELS R, BRAZ C, et al. An economic and greenhouse gas footprint assessment of international maritime transportation of hydrogen using liquid organic hydrogen carriers [J]. Energy, 2023, 278. [百度学术]
[47]J RODRIGUE,. The geography of transport systems [M]. 5th ed. London: Routledge, 2020. [百度学术]
|