[1]GUO G, LONG B, CHENG B, ZHOU S, XU P, CAO B. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. Journal of Power Sources. 2010;195(8):2393-2398. [百度学术]
[2]SHEN M, GAO Q. System simulation on refrigerant-based battery thermal management technology for electric vehicles. Energy Conversion and Management. 2020;203:112176. [百度学术]
[3]刘邦金, 汪林威, 吴月月, 刘永超, 钟国彬, 项宏发. 锂离子电池热管理研究进展. 化工学报. 2024;75(12):4413-4431. [百度学术] LIU Bangjin, WANG Linwei, WU Yueyue, LIU Yongchao, ZHONG Guobin, XIANG Hongfa. Advances in thermal management of lithium-ion batteries. CIESC Journal[J], 2024, 75(12): 4413-4431. [百度学术]
[4]PESARAN AA. Battery thermal models for hybrid vehicle simulations. Journal of Power Sources. 2002;110(2):377-382. [百度学术]
[5]刘顺新, 李昊阳, 张建兴, 曾光, 许令平. 基于储能用280 Ah风冷电池包流道结构和导流板的协同优化[J]. 储能科学与技术, 2025, 14(5): 1806-1817. [百度学术] LIU Shunxin, LI Haoyang, ZHANG Jianxing, ZENG Guang, XU Lingping. A study on the synergistic optimization of flow channel structures and guide plates in a 280 Ah air-cooled battery pack for energy storage[J]. Energy Storage Science and Technology, 2025, 14(5): 1806-1817. [百度学术]
[6]张新宇, 罗声豪, 吴颖欣, 刘针莹, 张立志, 凌子夜. 复合相变材料用于锂离子电池热管理和热失控防护研究进展[J]. 储能科学与技术, 2025, 14(3): 1040-1053. [百度学术] ZHANG Xinyu, LUO Shenghao, WU Yingxin, LIU Zhenying, ZHANG Lizhi, LING Ziye. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. [百度学术]
[7]TETE PR, GUPTA MM, JOSHI SS. Developments in battery thermal management systems for electric vehicles: A technical review. Journal of Energy Storage. 2021;35:102255. [百度学术]
[8]PANCHAL S, DINCER I, AGELIN-CHAAB M, FRASER R, FOWLER M. Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions. Applied Thermal Engineering. 2016;96:190-199. [百度学术]
[9]JARREET A, KIM IY. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates. Journal of Power Sources. 2014;245:644-655. [百度学术]
[10]NIETO N, DIAZ L, GASTELURRUTIA J, BLANCO F, RAMOS JC, RIVAS A. Novel thermal management system design methodology for power lithium-ion battery. Journal of Power Sources. 2014;272:291-302. [百度学术]
[11]JAHANBAKHSHI A, NADOOSHAN AA, BAYAREH M. Cooling of a lithium-ion battery using microchannel heatsink with wavy microtubes in the presence of nanofluid. Journal of Energy Storage. 2022;49:104128. [百度学术]
[12]宋旭, 孙楠楠, 曹恒超, 朱桂香, 李孟涵, 刘晓日, 饶中浩. 基于并联蛇形流道的动力电池冷媒直冷热管理系统研究[J]. 储能科学与技术, 2024, 13(8): 2726-2736. [百度学术] SONG Xu, SUN Nannan, CAO Hengchao, ZHU Guixiang, LI Menghan, LIU Xiaori, RAO Zhonghao. Research on a power battery thermal management system using direct refrigerant cooling with parallel serpentine flow paths[J]. Energy Storage Science and Technology, 2024, 13(8): 2726-2736. [百度学术]
[13]段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光,李硕鹏,朱登宇,何亚茹. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价. 化工学报. 2025;76(S1):54-61. [百度学术] DUAN Haolei, CHEN Haoyuan, LIANG Kunfeng, WANG Lin, CHEN Bin, CAO Yong, ZHANG Chenguang, LI Shuopeng, ZHU Dengyu, HE Yaru, YANG Dapeng. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants. CIESC Journal[J], 2025, 76(S1): 54-61. [百度学术]
[14]DING Y, JI H, WEI M, LIU R. Effect of liquid cooling system structure on lithium-ion battery pack temperature fields. International Journal of Heat and Mass Transfer. 2022;183:122178. [百度学术]
[15]SHANG Z, QI H, LIU X, OUYANG C, Wang Y. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system. International Journal of Heat and Mass Transfer. 2019;130:33-41. [百度学术]
[16]ZHAO J, RAO Z, LI Y. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conversion and Management. 2015;103:157-165. [百度学术]
[17]E J, HAN D, QIU A, ZHU H, DENG Y, CHEN J. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Applied Thermal Engineering. 2018;132:508-520. [百度学术]
[18]ZHANG Y, WANG S, DING P. Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module. International Journal of Heat and Mass Transfer. 2017;113:295-309. [百度学术]
[19]YUAN H, WANG L, WANG L. Battery thermal management system with liquid cooling and heating in electric vehicles. Journal of Automotive Safety and Energy. 2012;3(4):371. [百度学术]
[20]QIAN Z, LI Y, RAO Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management. 2016;126:622-631. [百度学术]
[21]JIN L, LEE P, KONG X, FAN Y, CHOU S. Ultra-thin minichannel LCP for EV battery thermal management. Applied energy. 2014;113:1786-1794. [百度学术]
[22]GUO Z, WANG Y, ZHAO S, ZHAO T, NI M. Modeling and optimization of liquid-based battery thermal management system considering battery electrochemical characteristics. Journal of Energy Storage. 2023;70:108028. [百度学术]
[23]GUO Z, WANG Y, ZHAO S, ZHAO T, NI M . Modeling and optimization of micro heat pipe cooling battery thermal management system via deep learning and multi-objective genetic algorithms. International Journal of Heat and Mass Transfer. 2023;207:124024. [百度学术]
[24]GUO Z, XU Q, WANG Y, ZHAO T, NI M. Battery thermal management system with heat pipe considering battery aging effect. Energy. 2023;263:126116. [百度学术]
[25]HUANG Y, MEI P, LU Y, HUANG R, YU X, CHEN Z. A novel approach for Lithium-ion battery thermal management with streamline shape mini channel cooling plates. Applied Thermal Engineering. 2019;157:113623. [百度学术]
[26]莫文迪, 王思静, 林伊婷, 练成, 刘洪来. 基于SVR-NSGA-Ⅱ算法的混合电池热仿真优化. 化工进展. 2025;44(8):4795-4807. [百度学术] MO Wendi, WANG Sijing, LIN Yiting, LIAN Cheng, LIU Honglai. Simulation and optimization of hybrid battery thermal management based on SVR-NSGA-Ⅱ algorithm. Chemical Industry and Engineering Progress[J], 2025, 44(8): 4795-4807. [百度学术]
[27]KELLNER Q. High-performance electric vehicle duty cycles and their impact on lithium ion battery performance and degradation: University of Warwick, 2019. [百度学术]
[28]LIANG Z, WANG R, MALT AH, SOURI M, ESFAHANI MN, JABBARI M. Systematic evaluation of a flat-heat-pipe-based thermal management: Cell-to-cell variations and battery ageing. Applied Thermal Engineering. 2021;192:116934. [百度学术]
[29]DARCOVICH K, MACNEIL DD, RECOSKIE S, CADIC Q, ILINCA F. Comparison of cooling plate configurations for automotive battery pack thermal management. Applied Thermal Engineering. 2019;155:185-195. [百度学术]
[30]EKSTROM H, LINDBERGH G. A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell. Journal of The Electrochemical Society . 2015;162(6):A1003. [百度学术]
[31]LI J, CHENG Y, JIA M, TANG Y, LIN Y, ZHANG Z. An electrochemical–thermal model based on dynamic responses for lithium iron phosphate battery. Journal of Power Sources.. 2014;255:130-143. [百度学术]
[32]XIA Q, YANG D, WANG Z, REN Y, SUN B, FENG Q. Multiphysical modeling for life analysis of lithium-ion battery pack in electric vehicles. Renewable and Sustainable Energy Reviews. 2020;131:109993. [百度学术]
[33]SAFTI M, DELACOURT C. Modeling of a commercial graphite/LiFePO4 cell. Journal of The Electrochemical Society. 2011;158(5):A562. [百度学术]
[34]XU M, ZHANG Z, WANG X, JIA L, YANG L. Two-dimensional electrochemical–thermal coupled modeling of cylindrical LiFePO4 batteries. Journal of Power Sources.. 2014;256:233-243. [百度学术]
|