储能科学与技术

• 储能材料与器件 • 上一篇    下一篇

钠离子电池内短路模型构建与安全性能提升

聂阳1(✉),何伟2,徐雄文1,涂健1,周碧香1,谢健3(✉)   

  1. 1. 湖南立方新能源科技有限责任公司,湖南 株洲 412000
    2. 中国船级社武汉分社,湖北 武汉 430000
    3. 浙江大学材料科学与工程学院,浙江 杭州 310058
  • 收稿日期:2025-11-13 修回日期:2025-12-10
  • 通讯作者: 谢健 E-mail:nieyangdf18@163.com;xiejian1977@zju.edu.cn
  • 作者简介:聂阳(1993—),男,硕士,工程师,研究方向为电化学工程,E-mail:nieyangdf18@163.com 谢健,副教授,研究方向为新能源材料与器件,E-mail:xiejian1977@zju.edu.cn
  • 基金资助:
    湖南省储能型锂/钠离子电池工程技术研究中心 (2019TP2045)
    2025年度株洲市“小荷”行动专项

Internal Short Circuit Modeling and Safety Performance Improvement of Sodium-Ion Batteries

NIE Yang1(✉),HE Wei2,XU Xiongwen1,TU Jian1,ZHOU Bixiang1,XIE Jian3(✉)   

  1. 1. LI-FUN Technology Corporation Limited, Zhuzhou , Hunan 412000, China
    2. China Classification Society Wuhan Branch, Wuhan , Hubei 430000, China
    3. School of Materials Science and Engineering, Zhejiang University, Hangzhou , Zhejiang 310058, China
  • Received:2025-11-13 Revised:2025-12-10
  • Contact: XIE Jian E-mail:nieyangdf18@163.com;xiejian1977@zju.edu.cn
  • Supported by:

摘要: 锂离子电池内短路(ISC)机制已被广泛研究,鉴于钠离子电池与锂离子电池结构较为类似,其内短路机制可以参考锂离子电池的研究成果。但是,考虑到两者使用的主材和辅材存在差异,其短路机制的差异仍需要进一步模拟验证。本文采用1 Ah级的软包钠离子电池,通过缺孔挤压的试验方案,对钠离子电池中四种类型的内短路模型进行模拟,并且比较了磷酸铁锂(LFP)和三元(NCM)体系的锂离子电池和钠离子电池在最严苛短路方式下发热情况。发现钠离子电池在四种内短路模型中,负极材料与正极集流体(Al-An)短路过程发热最为严重。而与锂离子电池相比,相同的内短路模型下,钠离子电池温升更高。由于钠电负极集流体铝箔和锂电负极集流体铜箔的电导率、导热性和化学稳定性存在差异,通过单因子试验,发现将钠电负极集流体改为铜箔,能显著降低钠离子电池内短路过程的局部温升。进一步实验采用型号为32700的商业圆柱钠离子电池,验证了负极使用铜集流体能够显著提高针刺通过率,为钠离子电池的安全性能提升和商业化提供解决思路。

关键词: 钠离子电池, 内短路方式, 电池安全性能, 短路模拟

Abstract: The internal short circuit (ISC) mechanisms of lithium-ion batteries (LIBs) have been extensively studied. Given the structural similarities between sodium-ion batteries (SIBs) and LIBs, the research on the ISC mechanisms of SIBs can refer to that of LIBs. However, simulation validation of the SIBs remains necessary, due to the differences in key and auxiliary materials. This study employs 1 Ah pouch SIBs to simulate the four types of ISC models and compares the thermal behavior of SIBs and LIBs (LFP and NCM) under the most severe ISC conditions. The results reveal that SIBs exhibit the highest heat generation in the Al-Anode ISC mode, with significantly higher temperature rises than LIBs under the identical conditions. Due to differences in electrical conductivity, thermal conductivity, and chemical stability between aluminum foil (used in SIB anodes) and copper foil (used in LIB anodes), a single-factor experiment was conducted by replacing the SIB anode current collector with copper foil. The results demonstrated a significant reduction in localized temperature rise during the ISC process in SIBs. Further experiments using commercial 32700 SIBs verified that the use of copper foil current collector significantly improves the nail penetration pass rate, providing a viable strategy to enhance safety performance of SIBs for commercialization.

Key words: sodium-ion battery, internal short-circuit modes, safety performance, short circuit simulation

中图分类号: