储能科学与技术 ›› 2012, Vol. 1 ›› Issue (1): 41-49.

• 特约文章 • 上一篇    下一篇

纳米燃料——一种新的储能载体

宋鹏翔1,丁玉龙1,2,文东升3   

  1. 1中国科学院过程工程研究所储能研究中心,北京 100190;2英国利兹大学颗粒科学与工程研究中心,利兹 LS2 9JT;3英国伦敦大学玛丽皇后学院工程与材料科学学院,伦敦 E1 4NS
  • 收稿日期:2012-07-23 修回日期:2012-07-30 出版日期:2012-09-01 发布日期:2012-09-01
  • 通讯作者: 宋鹏翔(1983—), 男,博士,助理研究员,研究方向为纳米颗粒在能源领域的应用、化石能源清洁利用及储能材料与过程,E-mail:pxsong@home.ipe.ac.cn。
  • 作者简介:宋鹏翔(1983—), 男,博士,助理研究员,研究方向为纳米颗粒在能源领域的应用、化石能源清洁利用及储能材料与过程,E-mail:pxsong@home.ipe.ac.cn。
  • 基金资助:
    国家自然科学基金(21106166)及中国科学院重点部署(KGED-EW-302-1)项目。

A novel energy storage carrier: Nanofuels

SONG Pengxiang1,DING Yulong1,2,WEN Dongsheng3   

  1. 1Center for Energy Storage Science and Engineering,Institute of Process Engineering,Chinese Academy of Science,Beijing 100190,China;2Institute of Particle Science and Engineering,University of Leeds,Leeds LS2 9JT,UK; 3School ofEngineering and Material Sciences,Queen Mary,University of London,London E1 4NS,U K
  • Received:2012-07-23 Revised:2012-07-30 Online:2012-09-01 Published:2012-09-01

摘要: 提出了以纳米燃料作为储能载体的新概念,即含能纳米微粒或载于溶液中的含能纳米颗粒悬浮液作为二次能源载体。纳米燃料的燃烧过程应用于内燃机在本文中首次提出。讨论了几类潜在的可用纳米能源,包括硅、铝和铁,以及它们的干态与湿态应用形式。纳米燃料颗粒与传统燃料颗粒相比具有显著不同的热物理性质,这些性质改变是由于尺度效应带来的,尤其是纳米尺度下非常大的比表面积增大了氧化过程中的接触面积。纳米尺度下熔点和融化潜热的降低也和尺度的减小密切相关。本文还讨论了纳米储能材料的生产、点火及燃烧的控制、燃烧产物的捕集等有关纳米储能材料实际应用中的挑战性问题。

关键词: 纳米粒子, 纳米燃料, 储能, 储能载体, 纳米流体

Abstract:

A novel concept of nanofuels, pure energetic nanoparticles or suspensions of energetic nanoparticles in a liquid carrier, is presented here as a potential energy storage carrier. This study develops a prototype reciprocating internal combustion engine (ICE) as a model system to assess the combustion process of nanofuels. Several identified potential nanofuels, including silicon, aluminium and iron, in the form of wet-fuels and dry-fuels are investigated. Nanofuel particles are known to exhibit significantly different thermophysical properties when compared to the conventional fuel. When metallic particles approach length scales on the order of nanometers, significant changes in thermophysical properties often occur. At these dimensions, the surface-area-to-volume ratio of the particle increases considerably, and this enables providing a larger contact surface area during the rapid oxidation process. Several studies have reported lower melting points and lower heats of fusion for decreasing sizes of metal particle. Key features of the experimental assessment including nanofuels formulation and injection, ignition and combustion of nanofuels, oxide particle capture and regeneration, and engine emission, wear and lubrication are being investigated. Technological issues for the realization of the concept including nanofuel production, controlled ignition and combustion, oxidized particle capture and other related issues are discussed and key challenges are identified.

Key words: nanoparticles, nanofuels, energy storage, energy carrier, nanofluid