储能科学与技术 ›› 2016, Vol. 5 ›› Issue (2): 135-148.doi: 10.3969/j.issn.2095-4239.2016.02.004
李高然, 李洲鹏, 林展
收稿日期:
2015-12-08
修回日期:
2016-01-28
出版日期:
2016-03-01
发布日期:
2016-03-01
通讯作者:
林展,教授,博士生导师,从事高性能锂硫电池的研究,E-mail:zhanlin@zju.edu.cn.
作者简介:
李高然(1989--),男,博士研究生,从事高性能锂硫电池的研究,E-mail:gaoranli@zju.edu.cn
基金资助:
LI Gaoran, LI Zhoupeng, LIN Zhan
Received:
2015-12-08
Revised:
2016-01-28
Online:
2016-03-01
Published:
2016-03-01
摘要: 随着能源和环境问题的日益突出以及电子电动设备的迅猛发展,传统锂离子电池已经越来越难以满足人们对于高能量密度电池的需求.锂硫电池因其能量密度高,成本低以及无污染等优点,被认为是极有潜力的下一代高能量密度储能体系.然而由于锂硫电池中正极材料电子,离子电导率低,充放电过程中电极体积变化大,聚硫化物等中间产物的溶解和伴随的"穿梭效应"以及锂负极的使用所带来的锂枝晶等一系列问题,导致锂硫电池的循环寿命差,阻碍其产业化的应用发展.锂硫电池体系中碳质材料的引入可以提高材料导电性,缓冲体积变化,抑制聚硫化物穿梭,是提高其电化学性能的有效手段.本文综述了近年来最新的锂硫电池中碳质材料的应用研究进展,包括硫/碳复合物,柔性自支撑电池和碳质锂硫电池负极,分析了其对锂硫电池性能提升的作用机理,并展望了锂硫电池将来可能的发展方向.
中图分类号:
李高然, 李洲鹏, 林展. 锂硫电池中碳质材料的研究进展[J]. 储能科学与技术, 2016, 5(2): 135-148.
LI Gaoran, LI Zhoupeng, LIN Zhan. Carbon-based materials for advanced lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2016, 5(2): 135-148.
[1] GOODENOUGH John,PARK Kyu Sung. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society,2013,135(4):1167. [2] CHOI Nam Soon,CHEN Zonghai,FREUNBERGER Stefan,JI Xiulei,SUN Yang Kook,AMINE Khalil,YUSHIN Gleb, NAZAR Linda,CHO Jaephil,BRUCE Peter. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition,2012,51 (40): 9994. [3] TARASCON Jean Marie,ARMAND Michel. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414 (6861):359. [4] WANG Jiulin,HE Yushi,YANG Jun. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries[J]. Advanced Materials,2015,27(3):569. [5] MANTHIRAM Arumugam,CHUNG Sheng Heng,ZU Chenxi. Lithium-sulfur batteries:Progress and prospects[J]. Advanced Materials,2015,27(12):1980. [6] LIM Jeewoo,PYUN Jeffrey,CHAR Kookheon. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials[J]. Angewandte Chemie International Edition,2015,54(11):3249. [7] FANG Xin,PENG Huisheng. A revolution in electrodes:Recent progress in rechargeable lithium-sulfur batteries[J]. Small, 2015,11(13):1488. [8] CHEN Renjie,ZHAO Teng,WU Feng. From a historic review to horizons beyond:Lithium-sulphur batteries run on the wheels[J]. Chemical Communications,2015,51(1):18. [9] XU Guiyin,DING Bing,PAN Jin,NIE Ping,SHEN Laifa, ZHANG Xiaogang. High performance lithium-sulfur batteries: Advances and challenges[J]. Journal of Materials Chemistry A, 2014,2(32):12662. [10] XU Guiliang, WANG Qi, FANG Junchuan, XU Yuefeng, LI Juntao, HUANG Ling,SUN Shigang. Tuning the structure and property of nanostructured cathode materials of lithium ion and lithium sulfur batteries[J]. Journal of Materials Chemistry A,2014,2(47): 19941. [11] KIM Haeqyeom,LIM Hee Dae,KIM Jinsoo,KANG Kisuk. Graphene for advanced Li/S and Li/air batteries[J]. Journal of Materials Chemistry A,2014,2(1):33. [12] CHEN RenJie,ZHAO Teng,LI Li,CHEN Junzheng,WU Feng . Cathode materials for high-specific-energy Li-S batteries[J]. Scientia Sinica Chimica,2014,44(8):1298. [13] CHEN Lin,SHAW Leon. Recent advances in lithium-sulfur batteries[J]. Journal of Power Sources,2014,267:770. [14] ZHANG Shengshui. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources,2013,231:153. [15] LIN Zhan,LIU Zengcai,DUDNEY Nancy,LIANG Chengdu. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano,2013,7(3):2829. [16] XIN Sen,GUO Yuguo,WAN Lijun. Nanocarbon networks for advanced rechargeable lithium batteries[J]. Accounts of Chemical Research,2012,45(10):1759. [17] XU Fei,TANG Zhiwei,HUANG Siqi,CHEN Luyi,LIANG Yeru,MAI Weicong,ZHONG Hui,FU Ruowen,WU Dingcai . Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nature Communications,2015,6:7221. [18] JUNG Dae Soo,HWANG Tae Hoon,LEE Ji Hoon,KOO Hye Young,SHAKOOR Rana,KAHRAMAN Ramazan,JO Yong Nam,PARK Min Sik,CHOI Jang Wook. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery[J]. Nano Letters,2014,14(8):4418. [19] CHEN Shuangqiang,HUANG Xiaodan,SUN Bing,ZHANG Jinqiang,LIU Hao,WANG Guoxiu . Multi-shelled hollow carbon nanospheres for lithium-sulfur batteries with superior performances[J]. Journal of Materials Chemistry A,2014,2(38):16199. [20] SOHN Hiesang,GORDIN Mikhail,XU Terrence,CHEN Shuru, LV Dongping,SONG Jiangxuan,MANIVANNAN Ayyakkannu, WANG Donghai. Porous spherical carbon/sulfur nanocomposites by aerosol-assisted synthesis:The effect of pore structure and morphology on their electrochemical performance as lithium/sulfur battery cathodes[J]. ACS Applied Materials & Interfaces,2014, 6(10):7596. [21] ZHAO Cunyu,LIU Lianjun,ZHAO Huilei,KRALL Andy, WEN Zhenhai,CHEN Junhong,HURLEY Patrick,JIANG Junwei, LI Ying. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries[J]. Nanoscale,2014, 6(2):882. [22] WANG Hongqiang,ZHANG Chaofeng,CHEN Zhixin,LIU Hua Kun,GUO Zaiping . Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries[J]. Carbon,2015,81:782. [23] ZHAO Mengqiang,PENG Hongjie,TIAN Guili,ZHANG Qiang,HUANG Jiaqi,CHENG Xinbing,TANG Cheng,WEI Fei. Hierarchical vine-tree-like carbon nanotube architectures: In-situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries[J]. Advanced Materials,2014,26(41): 7051. [24] HE Guang,MANDLMEIER Benjamin,SCHUSTER Jörg, NAZAR L F,BEIN Thomas . Bimodal mesoporous carbon nanofibers with high porosity:Freestanding and embedded in membranes for lithium-sulfur batteries[J]. Chemistry of Materials, 2014,26(13):3879. [25] WANG Lina,ZHAO Yu,THOMAS Morgan,BYON Hye Ryung . In situ synthesis of bipyramidal sulfur with 3D carbon nanotube framework for lithium-sulfur batteries[J]. Advanced Functional Materials,2014,24(15):2248. [26] ZHANG Qiang,HUANG Jiaqi,QIAN Weizhong,ZHANG Yingying, WEI Fei. The road for nanomaterials industry:A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage[J]. Small,2013,9(8):1237. [27] LIU Xinyan,PENG Hongjie,ZHANG Qiang,HUANG Jiaqi, LIU Xiaofei,WANG Li,HE Xiangming,ZHU Wancheng, WEI Fei. Hierarchical carbon nanotube/carbon black scaffolds as short- and long-range electron pathways with superior Li-ion storage performance[J]. ACS Sustainable Chemistry & Engineering,2014, 2(2):200. [28] DUAN Xiaobo,HAN Yamiao,HUANG Liwu,LI Yanbing, CHEN Yungui . Improved rate ability of low cost sulfur cathodes by using ultrathin graphite sheets with self-wrapped function as cheap conductive agent[J]. Journal of Materials Chemistry A,2015, 3(15):8015. [29] LI Yunyong,LI Zesheng,ZHANG Qinwei,SHEN Peikang . Sulfur-infiltrated three-dimensional graphene-like material with hierarchical pores for highly stable lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2014,2(13):4528. [30] PENG Hongjie,LIANG Jiyuan,ZHU Lin,HUANG Jiaqi, CHENG Xinbing,GUO Xuefeng,DING Weiping,ZHU Wancheng, ZHANG Qiang. Catalytic self-limited assembly at hard templates:A mesoscale approach to graphene nanoshells for lithium-sulfur batteries[J]. ACS Nano,2014,8(11):11280. [31] ZHAO Mengqiang,ZHANG Qiang,HUANG Jiaqi,TIAN Guili, NIE Jingqi,PENG Hongjie,WEI Fei. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J]. Nature Communications,2014,5:3410. [32] LI Bin,LI Songmei,LIU Jianhua,WANG Bo,YANG Shubin . Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries[J]. Nano Letters,2015,15 (5):3073. [33] NAIR Rahul Raveendran,BLAKE Peter,GRIGORENKO Alexander,NOVOSELOV Konstantin,BOOTH Tim,STAUBER Tobias,PERES Nuno,GEIM Andre. Fine structure constant defines visual transparency of graphene[J]. Science,2008, 320(5881):1308. [34] TROMP Rudolf,HANNON James. Thermodynamics and kinetics of graphene growth on SiC(0001)[J]. Physical Review Letters, 2009,102(10):106104. [35] MATTEVI Cecilia,KIM Hokwon,CHHOWALLA Manish. A review of chemical vapour deposition of graphene on copper[J]. Journal of Materials Chemistry,2011,21(10):3324. [36] LEE Changgu,WEI Xiaoding,KYSAR Jeffrey,HONE James. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385. [37] XU Jiantie,SHUI Jianglan,WANG Jianli,WANG Min,LIU Huakun,DOU Shixue,JEON In Yup,SEO Jeong Min,BAEK Jong Beon,DAI Liming. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries[J]. ACS Nano,2014,8(10):10920. [38] ZHENG Shiyou,WEN Yang,ZHU Yujie,HAN Zhuo,WANG Jing,YANG Junhe,WANG Chunsheng . In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes[J]. Advanced Energy Materials,2014,4(16):1400482. [39] ZHANG Chen,LV Wei,ZHANG Weiguo,ZHENG Xiaoyu,WU Mingbo,WEI Wei,TAO Ying,LI Zhengjie,YANG Quanhong . Reduction of graphene oxide by hydrogen sulfide:A promising strategy for pollutant control and as an electrode for Li-S batteries[J]. Advanced Energy Materials,2014,4(7):1301565. [40] CHEN Hongwei,WANG Changhong,DONG Weiling,LU Wei,DU Zhaolong,CHEN Liwei. Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance[J]. Nano Letters,2015,15(1):798. [41] RONG Jiepeng,GE Mingyuan,FANG Xin,ZHOU Chongwu. Solution ionic strength engineering as a generic strategy to coat graphene oxide (go) on various functional particles and its application in high-performance lithium-sulfur (Li-S) batteries[J]. Nano Letters,2014,14(2):473. [42] OSCHATZ Martin,BORCHARDT Lars,PINKERT Katja,THIEME Sören,LOHE Martin R,HOFFMANN Claudia,BENUSCH Matthias,WISSER Florian M,ZIEGLER Christoph,GIEBELER Lars,RÜMMELI Mark H,ECKERT Jürgen, EYCHMÜLLER Alexander,KASKEL Stefan . Hierarchical carbide- derived carbon foams with advanced mesostructure as a versatile electrochemical energy-storage material[J]. Advanced Energy Materials,2014, 4(2):1300645. [43] LYU Zhiyang,XU Dan,YANG Lijun,CHE Renchao,FENG Rui,ZHAO Jin,LI Yi,WU Qiang,WANG Xizhang,HU Zheng . Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries[J]. Nano Energy,2015, 12:657. [44] HOFFMANN Claudia,THIEME Sören,BRUCKNER Jan, OSCHATZ Martin,BIEMELT Tim,MONDIN Giovanni, ALTHUES Holger,KASKEL Stefan. Nanocasting hierarchical carbide-derived carbons in nanostructured opal assemblies for high-performance cathodes in lithium-sulfur batteries[J]. ACS Nano,2014,8(12):12130. [45] CHOUDHURY Soumyadip,AGRAWAL Mukesh,FORMANEK Petr,JEHNICHEN Dieter,FISCHER Dieter,KRAUSE Beate, ALBRECHT Victoria,STAMM Manfred,IONOV Leonid. Nanoporous cathodes for high-energy Li-S batteries from gyroid block copolymer templates[J]. ACS Nano,2015,9(6):6147. [46] ZHAO Xiaohui,KIM Dul Sun,MANUEL James,CHO Kwon Koo,KIM Ki Won,AHN Hyo Jun,AHN Jou Hyeon . Recovery from self-assembly:A composite material for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2014,2(20): 7265. [47] STRUBEL Patrick,THIEME Sören,BIEMELT Tim,HELMER Alexandra,OSCHATZ Martin,BRÜCKNER Jan,ALTHUES Holger,KASKEL Stefan . ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery[J]. Advanced Functional Materials,2015,25(2):287. [48] LI Zhen,YUAN Lixia,YI Ziqi,SUN Yongming,LIU Yang,JIANG Yan,SHEN Yue,XIN Ying,ZHANG Zhaoliang, HUANG Yunhui . Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials,2013: 1301473. [49] WANG Zhiyu,DONG Yanfeng,LI Hongjiang,ZHAO Zongbin, WU Haobin,HAO Ce,LIU Shaohong,QIU Jieshan,LOU Xiongwen. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nature Communications,2014, 5:5002. [50] SONG Jiangxuan,GORDIN Mikhail,XU Terrence,CHEN Shuru,YU Zhaoxin,SOHN Hiesang,LU Jun,REN Yang, DUAN Yuhua,WANG Donghai. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angewandte Chemie International Edition,2015,54(14): 4325. [51] ZHOU Guangmin,PAEK Eunsu,HWANG Gyeong,MANTHIR AM Arumugam. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/ sulphur-codoped graphene sponge[J]. Nature Communications, 2015,6:7760. [52] WANG Xuefeng,GAO Yurui,WANG Jiazhao,WANG Zhaoxiang, CHEN Liquan . Chemical adsorption:Another way to anchor polysulfides[J]. Nano Energy,2015,12:810. [53] QIU Yongcai,LI Wanfei,ZHAO Wen,LI Guizhu,HOU Yuan, LIU Meinan,ZHOU Lisha,YE Fangmin,LI Hongfei,WEI Zhanhua,YANG Shihe,DUAN Wenhui,YE Yifan,GUO Jinghua,ZHANG Yueyang. High-rate, ultralong cycle-life lithium/ sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters,2014,14(8):4821. [54] YAN Jianhua,LIU Xingbo,WANG Xianfeng,LI Bingyun . Long-life, high-efficiency lithium/sulfur batteries from sulfurized carbon nanotube cathodes[J]. Journal of Materials Chemistry A,2015,3(18):10127. [55] YANG Chunpeng,YIN Yaxia,YE Huan,JIANG Kecheng, ZHANG Juan,GUO Yuguo. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2014,6(11):8789. [56] CHUNG Sheng Heng,MANTHIRAM Arumugam . Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries[J]. Advanced Functional Materials,2014,24(33):5299. [57] HUANG Jiaqi,ZHUANG Tingzhou,ZHANG Qiang,PENG Hongjie,CHEN Chengmeng,WEI Fei . Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries[J]. ACS Nano,2015,9(3):3002. [58] ZHOU Guangmin,PEI Songfeng,LI Lu,WANG Dawei, WANG Shaogang,HUANG Kun,YIN Lichang,LI Feng, CHENG Huiming. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2014,26(4):625. [59] CHUNG Shengheng,MANTHIRAM Arumugam. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials,2014,26(43):7352. [60] CHUNG Shengheng,MANTHIRAM Arumugam. High-performance Li-S batteries with an ultra-lightweight mwcnt-coated separator[J]. The Journal of Physical Chemistry Letters,2014,5(11):1978. [61] CHUNG Shengheng,SINGHAL Richa,KALRA Vibha,MANTHIRAM Arumugam. Porous carbon mat as an electrochemical testing platform for investigating the polysulfide retention of various cathode configurations in Li-S cells[J]. The Journal of Physical Chemistry Letters,2015,6(12):2163. [62] CHUNG Shengheng,MANTHIRAM Arumugam. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries[J]. Chemical Communications,2014,50(32):4184. [63] ZHU Lin,PENG Hongjie,LIANG Jiyuan,HUANG Jiaqi, CHEN Chengmeng,GUO Xuefeng,ZHU Wancheng,LI Peng, ZHANG Qiang . Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries[J]. Nano Energy,2015, 11:746. [64] SUN Li,LI Mengya,JIANG Ying,KONG Weibang,JIANG Kaili,WANG Jiaping,FAN Shoushan. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries[J]. Nano Letters,2014, 14(7):4044. [65] WANG Chao,WANG Xusheng,WANG Yanjie,CHEN Jitao, ZHOU Henghui,HUANG Yunhui . Macroporous free-standing nano- sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery[J]. Nano Energy,2015,11:678. [66] ZHOU Guangmin,LI Lu,MA Chaoqun,WANG Shaogang,SHI Ying,KORATKAR Nikhil,REN Wencai,LI Feng,CHENG Huiming . A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy, 2015,11:356. [67] QIE Long,MANTHIRAM Arumugam. A facile layer-by-layer approach for high-areal-capacity sulfur cathodes[J]. Advanced Materials,2015,27(10):1694. [68] JESCHULL Fabian,BRANDELL Daniel,EDSTRÖM kristina, LACEY Matthew James . A stable graphite negative electrode for the lithium-sulfur battery[J]. Chemical Communications,2015, 51:17100-17103. [69] HUANG Cheng,XIAO Jie,SHAO Yuyan,ZHENG Jianming, BENNETT Wendy,LU Dongping,SARAF Laxmikant,ENGELHARD Mark,JI Liwen,ZHANG Jiguang,LI Xiaolin,GRAFF Gordon, LIU Jun. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures[J]. Nature Communications, 2014,5:3015. [70] ZHENG Shiyou,CHEN Yvonne,XU Yunhua,YI Feng,ZHU Yujie,LIU Yihang,YANG Junhe,WANG Chunsheng. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries[J]. ACS Nano,2013,7(12):10995. [71] BRÜCKNER Jan,THIEME Sören,BÖTTGER-HILLER Falko,BAUER Ingolf,GROSSMANN Hannah Tamara,STRUBEL Patrick,ALTHUES Holger,SPANGE Stefan,KASKEL Stefan . Carbon-based anodes for lithium sulfur full cells with high cycle stability[J]. Advanced Functional Materials,2014,24(9):1284. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 肖哲熙, 鲁峰, 林贤清, 张晨曦, 白浩隆, 于春辉, 何姿颖, 姜海容, 魏飞. 气固流化床硅氧碳负极材料的宏量制备[J]. 储能科学与技术, 2022, 11(6): 1739-1748. |
[3] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[4] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[5] | 孙玉琦, 魏凤, 周洪, 周超峰. 专利视域下全球锂硫电池技术竞争态势分析[J]. 储能科学与技术, 2022, 11(5): 1657-1666. |
[6] | 何峰, 张静静, 陈奕君, 张建, 王得丽. 电化学氧还原反应合成H2O2碳基催化剂研究进展[J]. 储能科学与技术, 2021, 10(6): 1963-1976. |
[7] | 孙春水, 郭德才, 陈剑. 碳化木耳多孔碳的制备及在硫正极中的应用[J]. 储能科学与技术, 2021, 10(6): 2060-2068. |
[8] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[9] | 谢彬, 孙嘉楠. 基于机械仿真和测试的高比能量锂硫电池模组开发[J]. 储能科学与技术, 2021, 10(2): 586-597. |
[10] | 赵悠曼, 严小波, 段红坤, 陈泽伟. 碳纳米管导电剂对硅碳负极锂电池性能提升的探索[J]. 储能科学与技术, 2021, 10(1): 118-127. |
[11] | 闫梦蝶, 李晖, 凌敏, 潘慧霖, 张强. 基于溶解沉积机制锂硫电池的研究进展简评[J]. 储能科学与技术, 2020, 9(6): 1606-1613. |
[12] | 陆贇, 梁嘉宁, 朱用, 李峥嵘, 胡冶州, 陈科, 王得丽. 有机物衍生的锂硫电池正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1454-1466. |
[13] | 吴湘江, 何丰, 曹余良, 艾新平. 电解液组成对固相转化机制硫电极性能的影响[J]. 储能科学与技术, 2020, 9(2): 331-338. |
[14] | 王维坤, 王安邦, 金朝庆. 锂硫电池的实用化挑战[J]. 储能科学与技术, 2020, 9(2): 593-597. |
[15] | 叶戈, 袁洪, 赵辰孜, 朱高龙, 徐磊, 侯立鹏, 程新兵, 何传新, 南皓雄, 刘全兵, 黄佳琦, 张强. 全固态锂硫电池正极中离子输运与电子传递的平衡[J]. 储能科学与技术, 2020, 9(2): 339-345. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||