储能科学与技术 ›› 2017, Vol. 6 ›› Issue (2): 213-222.doi: 10.12028/j.issn.2095-4239.2016.0080
朱教群,宋 轶,周卫兵,刘凤利
收稿日期:
2016-10-13
修回日期:
2016-12-23
出版日期:
2017-03-01
发布日期:
2017-03-01
通讯作者:
朱教群(1964—),男,研究员,研究方向为新能源材料及蓄热混凝土制备等,E-mail:Zhujiaoq@whut.edu.cn。
基金资助:
ZHU Jiaoqun, SONG Yi, ZHOU Weibing, LIU Fengli
Received:
2016-10-13
Revised:
2016-12-23
Online:
2017-03-01
Published:
2017-03-01
摘要: 有机相变材料(PCMs)的导热系数小、储热放热速率低,在一定程度上限制了它的实际应用。以碳材料为吸附载体或填料的形式与有机相变材料进行复合,利用其优异的导热性能来提高有机相变材料的导热系数,已成为储热技术的研究热点。本文介绍了几种碳材料的特点,重点综述了国内外在利用多孔碳材料、碳纤维以及碳纳米材料改善有机相变储能材料导热性能方面的研究现状。指出多孔碳材料既能改善有机相变材料的导热性能,又能对相变材料起到封装作用,具有广阔应用前景,提出新兴碳纳米材料在相变导热强化方面具有巨大优势,纳米复合相变材料在未来仍是研究热点,应加大研究力度。
朱教群,宋 轶,周卫兵,刘凤利. 基于碳材料的有机复合相变材料导热增强研究进展[J]. 储能科学与技术, 2017, 6(2): 213-222.
ZHU Jiaoqun, SONG Yi, ZHOU Weibing, LIU Fengli. The use of carbon materials for enhancing heat transfer of organic based composite phase change materials : A review[J]. Energy Storage Science and Technology, 2017, 6(2): 213-222.
[1] FAN L, KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review[J]. Renewable & Sustainable Energy Reviews, 2011, 15(1): 24-46. [2] 姜勇, 丁恩勇, 黎国康. 相变储能材料的研究进展[J]. 广州化学, 1999(3): 48-54. JIANG Yong, DING Enyong, LI Guokang. Progress in studies of phase change materials for heat energy storage[J]. [3] SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable & Sustainable Energy Reviews, 2009, 13(2): 318-345. [4] 湛立智, 李素平, 张正国, 等. 添加碳素复(混)合相变储热材料的研究及应用进展[J]. 化工进展, 2007, 26(12): 1733-1737. ZHAN Lizhi, LI Suping, ZHANG Zhengguo, et al. Research and application of affix carbon composite (hybrid) phase change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1733-1737. [5] 吴淑英, 朱冬生, 汪南. 改善有机储热材料传热性能的研究进展及应用[J]. 现代化工, 2009, 29(10): 19-23. WU Shuying, ZHU Dongsheng, WANG [6] 杨晟, 许勇铁, 由英来. 泡沫石墨作为相变储能材料填充物的研究[J]. 合肥工业大学学报 (自然科学版), 2012, 35(5): 598-601. YANG Sheng, XU Yongtie, YOU Yinglai. Investigation of composite phase change heat storage material filled with graphite foam[J]. Journal of [7] FANG X, FAN L W, DING Q, et al. Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets[J]. Energy & Fuels, 2013, 27(7): 4041-4047. [8] 李敏, 吴智深, 陈振乾, 等. 碳纤维对甘二烷相变材料热性能的影响[J]. 东南大学学报 (英文版), 2010, 26(2): 346-350. LI Min, WU Zhishen, CHEN Zhenqian, et al. Effect of carbon fiber on thermal properties of n-docosane phase change materials[J]. Journal of [9] LI J F, LU W, ZENG Y B, et al. Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene[J]. Solar Energy Materials & Solar Cells, 2014, 128(9): 48-51. [10] 仲亚娟, 李四中, 魏兴海, 等. 不同孔隙结构的炭材料作为石蜡相变储能材料强化传热载体[J]. 新型炭材料, 2009, 24(4): 349-353. ZHONG Yajuan, LI Sizhong, WEI Xinghai, et al. Carbon matrices with different pore structures as heat transfer intensifier in paraffin wax/carbon thermal energy storage system[J]. New Carbon Materials, 2009, 24(4): 349-353. [11] 尹辉斌, 高学农, 丁静, 等. 热适应复合相变材料的制备与热性能[J]. 太阳能学报, 2011, 32(9): 1424-1430. YIN Huibin, GAO Xuenong, DING Jing, et al. Preparation and thermal properties of thermal adaptation composite materials[J]. Acta Energiae Solaris Sinica, 2011, 32(9): 1424-1430. [12] 肖鑫, 张鹏. 泡沫石墨/石蜡复合相变材料热物性研究[J]. 工程热物理学报, 2013(3): 530-533. XIAO Xin, ZHANG Peng. Preparation and thermal characterization of graphite foam/paraffin composite phase change material[J]. Journal of Engineering Thermophysics, 2013(3): 530-533. [13] 马炳倩, 李建强, 彭志坚, 等. 石蜡基复合相变储热材料的导热性能[J]. 储能科学与技术, 2012, 1(2): 131-138. MA Bingqian, LI Jianqiang, PENG Zhijian, et al. Paraffin based composite phase change materials for thermal energy storage: Thermal conductivity enhancement[J]. Energy Storage Science and Technology, 2012, 1(2): 131-138. [14] 张秀荣, 朱冬生, 高进伟, 等. 石墨/石蜡复合相变储热材料的热性能研究[J]. 材料研究学报, 2010, 24(3): 332-336. ZHANG Xiurong, ZHU Dongsheng, GAO Jinwei, et al. Study on thermal properties of graphite/paraffin composites as phase change heat storage material[J]. Chinese Journal of Materials Research, 2010, 24(3): 332-336. [15] WARZOHA R J, WEIGAND R M, FLEISCHER A S. Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers[J]. Applied Energy, 2015, 137: 716-725. [16] 丁晴, 方昕, 范利武, 等. 不同二维纳米填料对复合相变材料导热系数的影响[J]. 储能科学与技术, 2014, 3(3): 250-255. DING Qing, FANG Xin, FAN Liwu, et al. Influence of 2-D nanofillers on the thermal conductivity of composite PCMs[J]. Energy Storage Science and Technology, 2014, 3(3): 250-255. [17] FAN L W, FANG X, WANG X, et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy, 2013, 110(5): 163-172. [18] LI M, CHEN M, WU Z, et al. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material[J]. Energy Conversion & Management, 2014, 83(7): 325-329. [19] CUI Y, LIU C, HU S, et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials[J]. Solar Energy Materials & Solar Cells, 2011, 95(4): 1208-1212. [20] HARISH S, OREJON D, TAKATA Y, et al. Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J]. Applied Thermal Engineering, 2015, 80(5): 205-211. [21] SARI A, KARAIPEKLI A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2009, 93(5): 571-576. [22] WANG J, XIE H, XIN Z, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy, 2010, 84(2): 339-344. [23] DA H C, LEE J, HONG H, et al. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCMs) containing carbon additives for heat storage application[J]. International Journal of Refrigeration, 2014, 42: 112-120. [24] 周卫兵, 蔡凡凡, 朱教群, 等. 己二酸/膨胀石墨复合相变材料性能研究[J]. 功能材料, 2014, 45(5): 15075-15079. ZHOU Weibing, CAI Fanfan, ZHU Jiaoqun, et al. Study on performance of adipic acid/expanded graphite composite phase change materials[J]. Journal of Functional Materials, 2014, 45(5): 15075- 15079. [25] 张东. 多孔矿物介质对有机相变材料导热性能的影响[J]. 矿物岩石, 2007, 27(3): 42-46. ZHANG Dong. Effect of porous minerals on the thermal conductivity of organic phase change material[J]. Journal of Mineralogy and Petrology, 2007, 27(3): 42-46. [26] 高学农, 刘欣, 孙滔, 等. 基于复合相变材料的电子芯片热管理性能研究[J]. 高校化学工程学报, 2013, 27(2): 187-192. GAO Xuenong, LIU Xin, SUN Tao, et al. Research on the thermal management performance of electronic chip with composite phase change material[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(2): 187-192. [27] ZHANG L, ZHU J, ZHOU W, et al. Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials[J]. Energy, 2012, 39(1): 294-302. [28] KARTHIK M, FAIK A, BLANCO-RODRIGUEZ P, et al. Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications[J]. Carbon, 2015, 94(14): 266-276. [29] CHOW L C, ZHONG J K, BEAM J E. Thermal conductivity enhancement for phase change storage media[J]. International Communications in Heat & Mass Transfer, 1989, 23(1): 91-100. [30] NAYAK K C, SAHA S K, SRINIVASAN K, et al. A numerical model for heat sinks with phase change materials and thermal conductivity enhancers[J]. International Journal of Heat & Mass Transfer, 2006, 49(11): 1833-1844. [31] METTAWEE E B S, ASSASSA G M R. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy, 2007, 81(7): 839-845. [32] 王继芬, 谢华清, 辛忠, 等. 纳米ZnO/石蜡复合相变材料的热物理性质研究[J]. 工程热物理学报, 2011, 32(11): 1897-1899. WANG Jifen, XIE Huaqing, XIN Zhong, et al. Study on the thermophysical properties of paraffin wax composites containing ZnO nanoparticles[J]. Journal of Engineering Thermophysics, 2011, 32(11): 1897-1899. [33] TANG B, QIU M, ZHANG S. Thermal conductivity enhancement of PEG/SiO2, composite PCM by in situ Cu doping[J]. Solar Energy Materials & Solar Cells, 2012, 105(19): 242-248. [34] FAN L, KHODADADI J M. An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials(NePCM)[J]. International Journal of Thermal Sciences, 2012, 62(9): 120-126. [35] TANG B, WU C, QIU M, et al. PEG/SiO2-Al2O3, hybrid form-stable phase change materials with enhanced thermal conductivity[J]. Materials Chemistry & Physics, 2014, 144(1/2): 162-167. [36] ŞAHAN N, FOIS M, PAKSOY H. Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites[J]. Solar Energy Materials & Solar Cells, 2015, 137: 61-67. [37] 周春玉, 曾亮, 吉莉, 等. 石墨烯及其复合材料导热性能的研究现状[J]. 材料开发与应用, 2010, 25(6): 94-100. ZHOU Chunyu, ZENG Liang, JI Li, et al. Research on the thermal conductivities of graphene and graphene based composite materials[J]. Development and Application of Materials, 2010, 25(6): 94-100. [38] LIU Lingkun, SU Di, TANG Yaojie, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review[J]. Renewable & Sustainable Energy Reviews, 2016, 62: 305-317. [39] 王大伟, 余荣升, 晏华, 等. 碳纤维/石蜡/膨胀石墨复合相变材料的制备及强化传热研究[J]. 材料导报, 2014, 28(24): 70-73. WANG Dawei, YU Rongsheng, YAN Hua, et al. Study on preparation and heat transfer enhancement of carbon fiber/paraffin/ expanded graphite phase change composites[J]. Materials Review, 2014, 28(24): 70-73. [40] 陈嘉杰, 徐涛, 方晓明, 等. 膨胀石墨基十二烷复合相变蓄冷材料的性能研究[J]. 工程热物理学报, 2015, 36(6): 1307-1310. CHEN Jiajie, XU Tao, FANG Xiaoming, et al. Performance study on expanded graphite based dodecane composite phase change material for cold thermal energy storage[J]. Journal of Engineering Thermophysics, 2015, 36(6): 1307-1310. [41] MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26(14/15): 1652-1661. [42] 田云峰, 李珍, 王洋, 等. 石蜡/不同粒径膨胀石墨复合相变储热材料的制备和性能[J]. 材料研究学报, 2015, 29(4): 262-268. TIAN Yunfeng, LI Zhen, WANG Yang, et al. Preparation and performance of a phase change heat storage composite of paraffin/different particle sized expanded graphite[J]. Chinese Journal of Materials Research, 2015, 29(4): 262-268. [43] 郭茶秀, 王闯. 基于石墨泡沫强化的相变储能材料研究进展[J]. 新能源进展, 2014, 2(2): 146-150. GUO Chaxiu, WANG Chuang. Research progress on phase change material enhancement by graphite foam[J]. Advances in New and Renewable Energy, 2014, 2(2): 146-150. [44] GUO C X, MA X L, YANG L. PCM/graphite foam composite for thermal energy storage device[C]//Iop Conference Series: Materials Science & Engineering, IOP Publishing, 2015. [45] ZHONG Y, GUO Q, LI S, et al. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2010, 94(6): 1011-1014. [46] 宋金亮, 郭全贵, 仲亚娟, 等. 高密度石墨泡沫及其石蜡复合材料的热物理性能 (英文)[J]. 新型炭材料, 2012, 27(1): 27-34. SONG Jinliang, GUO Quangui, ZHONG Yajuan, et al. Thermophysical properties of high-density graphite foams and their paraffin composites[J]. New Carbon Materials, 2012, 27(1): 27-34. [47] JI H, SELLAN D P, PETTES M T, et al. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage[J]. Energy & Environmental Science, 2014, 7(3): 1185-1192. [48] 戴琴, 周莉, 朱月, 等. 改善石蜡相变材料导热性能的研究进展[J]. 当代化工, 2014, 43(7): 1257-1259. DAI Qin, ZHOU Li, ZHU Yue, et al. Research progress in improving thermal conductivity of paraffin PCM[J]. Contemporary Chemical Industry, 2014, 43(7): 1257-1259. [49] FUKAI J, KANOU M, KODAMA Y, et al. Thermal conductivity enhancement of energy storage media using carbon fibers[J]. Energy Conversion & Management, 2000, 41(14): 1543-1556. [50] ELGAFY A, LAFDI K. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon, 2005, 43(15): 3067-3074. [51] FRUSTERI F, LEONARDI V, VASTA S, et al. Thermal conductivity measurement of a PCM based storage system containing carbon fibers[J]. Applied Thermal Engineering, 2005, 25(11/12): 1623-1633. [52] KARAIPEKLI A, SARI A, KAYGUSUZ K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy, 2007, 32(13): 2201-2210. [53] KHODADADI J M, FAN L, BABAEI H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review[J]. Renewable & Sustainable Energy Reviews, 2013, 24(10): 418-444. [54] 乔辉, 杨笑, 魏金柱. 碳纳米纤维的制备及应用[J]. 技术与市场, 2010, 17(6): 13-14. QIAO Hui, YANG Xiao, WEI Jinzhu. Preparation and application of carbon nanofibers[J]. Technology and Market, 2010, 17(6): 13-14. [55] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(87): 265-266. [56] 李新芳, 吴淑英, 朱冬生. 碳纳米管/石蜡复合相变储能材料的导热性能研究[J]. 现代化工, 2015, 35(5): 113-116. LI Xinfang, WU Shuying, ZHU Dongsheng. Thermal conductivity of CNTs/paraffin phase change composites[J]. Modern Chemical Industry, 2015, 35(5): 113-116. [57] 王继芬, 谢华清, 辛忠, 等. 酸化碳纳米管棕榈酸复合相变储能材料的研究[J]. 工程热物理学报, 2010, 31(8): 1389-1391. WANG Jifen, XIE Huaqing, XIN Zhong, et al. Experimental study on palmitic acid composites containing carbon nanotubes by acid treatment[J]. Journal of Engineering Thermophysics, 2010, 31(8): 1389-1391. [58] 王晓, 丁晴, 姚晓莉, 等. 石蜡基碳纳米管复合相变材料的热物性研究[J]. 热科学与技术, 2013, 12(2): 124-130. WANG Xiao, DING Qing, YAO Xiaoli, et al. Thermophysical properties of paraffin-based composite phase change materials filled with carbon nanotubes[J]. Journal of Thermal Science and Technology, 2013, 12(2): 124-130. [59] GHOSH S, CALIZO I, DEWELDEBRHA D, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15): 151911. [60] 吴淑英, 童旋, 龚曙光, 等. 纳米石墨烯片/石蜡复合相变蓄热材料的热性质研究[J]. 化工新型材料, 2014, 42(7): 105-107. WU Shuying, TONG Xuan, GONG Shuguang, et al. Thermal property of nano-GnPs/paraffin heat storage phase change composite material[J]. New Chemical Materials, 2014, 42(7): 105-107. [61] SHAIKH S, LAFDI K, HALLINAN K. Carbon nanoadditives to enhance latent energy storage of phase change materials[J]. Journal of Applied Physics, 2008, 103(9): 519-525. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[3] | 何峰, 张静静, 陈奕君, 张建, 王得丽. 电化学氧还原反应合成H2O2碳基催化剂研究进展[J]. 储能科学与技术, 2021, 10(6): 1963-1976. |
[4] | 鲁博辉, 师志成, 张永学, 赵泓宇, 王梓熙. 石蜡/Fe3O4纳米颗粒复合相变材料在管壳式储热单元中的储/放热性能研究[J]. 储能科学与技术, 2021, 10(5): 1709-1719. |
[5] | 涂航, 张航, 刘丽辉, 李杰, 孙小琴. 相变混凝土墙体的传热性能研究[J]. 储能科学与技术, 2021, 10(1): 287-294. |
[6] | 徐众, 侯静, 万书权, 李军, 吴恩辉, 刘黔蜀, 甘鑫. 金属泡沫/石蜡复合相变材料的制备及热性能研究[J]. 储能科学与技术, 2020, 9(1): 109-116. |
[7] | 陈理, 黄伟国, 刘孝伟, 徐志彬, 周志学. 不同碳材料对铅炭负极的性能影响[J]. 储能科学与技术, 2018, 7(6): 1248-1252. |
[8] | 闻雷, 梁骥, 石颖, 陈静, 孙振华, 吴敏杰, 李峰. 柔性锂硫电池的材料设计与实现[J]. 储能科学与技术, 2018, 7(3): 465-470. |
[9] | 李 晨,张 熊,王 凯,孙现众,马衍伟. 基于CO2转化的碳材料制备及其在超级电容器中的应用[J]. 储能科学与技术, 2017, 6(5): 1041-1049. |
[10] | 车海山,陈迁乔,钟 秦,何 思. 赤藓糖醇基相变复合纤维制备及热性能[J]. 储能科学与技术, 2017, 6(4): 644-654. |
[11] | 程晓敏1,2,王青萌1,李元元1,喻国铭2. In元素对Sn-Bi-Zn合金传热储热性能及结构的影响[J]. 储能科学与技术, 2017, 6(4): 662-668. |
[12] | 王维坤,王安邦,金朝庆,杨裕生. 高性能锂硫电池正极材料研究进展及构建策略[J]. 储能科学与技术, 2017, 6(3): 331-344. |
[13] | 宋维力, 范丽珍. 超级电容器研究进展:从电极材料到储能器件[J]. 储能科学与技术, 2016, 5(6): 788-799. |
[14] | 李高然, 李洲鹏, 林展. 锂硫电池中碳质材料的研究进展[J]. 储能科学与技术, 2016, 5(2): 135-148. |
[15] | 向欢欢, 陈观生, 张仁元, 刘冲冲, 李风. 金属/相变储热材料的导热性研究进展[J]. 储能科学与技术, 2014, 3(5): 520-525. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||