[1] 孙现众, 张熊, 王凯, 等. 高能量密度的锂离子混合型电容器[J]. 电化学, 2017, 23(5):586-603. SUN X Z, ZHANG X, WANG K, et al. High energy density lithium ion hybrid capacitor[J]. Electrochemistry, 2017, 23(5):586-603
[2] MA Y, CHANG H, ZHANG M, et al. Graphene-based materials for lithium-ion hybrid supercapacitors[J]. Advanced Materials, 2015, 27(36):5296-5308.
[3] 张熊, 马衍伟. 电化学超级电容器电极材料的研究进展[J]. 物理, 2011, 40(10):656-663. ZHANG X, MA Y W. Recent advances in the development of electrode materials for supercapacitor[J]. Physical, 2011, 40(10):656-663
[4] 刘文杰, 孙现众, 郝青丽. 电化学沉积制备MnO2-PEDOT-PSS复合材料及其电容特性研究[J]. 储能科学与技术, 2018, 7(2):262-269. LIU W J, SUN X Z, HAO Q L. Electrochemical deposition of MnO2/PEDOT-PSS composite and its capacitance characteristics[J]. Energy Storage Science and Technology, 2018, 7(2):262-269.
[5] 麻亚挺, 黄健, 刘翔, 等. 微纳米空心结构金属氧化物作为锂离子电池负极材料的研究进展[J]. 储能科学与技术, 2017, 6(5):871-888. MA Y T, HUANG J, LIU X, et al. Hollow micro/nanostructures metal oxide as advanced anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5):871-888.
[6] YANG M, ZHONG Y, REN J, et al. Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage[J]. Advanced Energy Materials, 2015, 5(17):2416-2420.
[7] WANG H L, XU Z W, LI Z, et al. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide[J]. Nano Letters, 2014, 14(4):1987-1994.
[8] AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6):518-522.
[9] LIM E, JO C, KIM H, et al. Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors[J]. ACS Nano, 2015, 9(7):7497-7505.
[10] LIM E, KIM H, JO C, et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode[J]. ACS Nano, 2014, 8(9):8968-8978.
[11] BREZESINSKI K, WANG J, HAETGE J, et al. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group transition metal oxides with iso-oriented layered nanocrystalline domains[J]. Journal of the American Chemical Society, 2010, 132(20):6982-6990.
[12] KONG L, ZHANG C, WANG J, et al. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor[J]. ACS Nano, 2015, 9(11):11200-11208.
[13] WANG X, YAN C, YAN J, et al. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device[J]. Nano Energy, 2015, 11:765-772.
[14] HAN F, LI W C, LI M R, et al. Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume[J]. Journal of Materials Chemistry, 2012, 22(19):9645-9651.
[15] ZHANG S, LI C, ZHANG X, et al. High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode[J]. ACS Applied Materials Interfaces, 2017, 9(20):17136-17144.
[16] ZHANG F, ZHANG T, YANG X, et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density[J]. Energy & Environmental Science, 2013, 6(5):1623-1632.
[17] AN C, LIU X, GAO Z, et al. Filling and unfilling carbon capsules with transition metal oxide nanoparticles for Li-ion hybrid supercapacitors:Towards hundred grade energy density[J]. Science China Materials, 2017, 60(3):217-227.
[18] WANG H W, GUAN C, WANG X F, et al. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode[J]. Small, 2015, 11(12):1470-1477.
[19] CAI Y, ZHAO B, WANG J, et al. Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance[J]. Journal of Power Sources, 2014, 253:80-89.
[20] YANG C, LAN J L, LIU W X, et al. High-performance Li-ion capacitor based on an activated carbon cathode and well-dispersed ultrafine TiO2 nanoparticles embedded in mesoporous carbon nanofibers anode[J]. ACS Applied Materials & Interfaces, 2017, 9(22):18710-18719.
[21] HUANG H, WANG X, TERVOORT E, et al. Nano-sized structurally disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors[J]. ACS Nano, 2018, 12(3):2753-2763.
[22] HAN P X, MA W, PANG S P, et al. Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte[J]. Journal of Materials Chemistry A, 2013, 1(19):5949-5954.
[23] ZHAO X, WANG H E, CAO J, et al. Amorphous/crystalline hybrid MoO2 nanosheets for high-energy lithium-ion capacitors[J]. Chemical Communications, 2017, 53(77):10723-10726.
[24] WANG H W, ZHANG Y, ANG H X, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode[J]. Advanced Functional Materials, 2016, 26(18):3082-3093.
[25] KIM H, PARK K Y, CHO M Y, et al. High-performance hybrid supercapacitor based on graphene-wrapped Li4Ti5O12 and activated carbon[J]. ChemElectroChem, 2014, 1(1):125-130.
[26] BANERJEE A, UPADHYAY K K, PUTHUSSERI D, et al. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs)[J]. Nanoscale, 2014, 6(8):4387-4394.
[27] LEE J H, SHIN W H, RYOU M H, et al. Functionalized graphene for high performance lithium ion capacitors[J]. ChemSusChem, 2012, 5(12):2328-2333.
[28] LIU M, ZHANG L X, HAN P X, et al. Controllable formation of niobium nitride/nitrogen-doped graphene nanocomposites as anode materials for lithium-ion capacitors[J]. Particle Particle Systems Characterization, 2015, 32(11):1006-1011. |