[1] NISHI Yoshio. Lithium ion secondary batteries:Past 10 years and the future[J]. Journal of Power Sources, 2001, 100 (1):101-106.
[2] FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267.
[3] LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226:272-288.
[4] WANG Qingsong, PING Ping, ZHAO Xuejuan, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224.
[5] LI Qi, CHEN Juner, FAN Lei, et al. Progress in electrolytes for rechargeable Li-based batteries and beyond[J]. Green Energy & Environment, 2016, 1 (1):18-42.
[6] CHOI Namsoon, CHEN Zonghai, FREUNBERGER Stefan, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition, 2012, 51 (40):9994-10024.
[7] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414:359.
[8] BRESSER Dominic, HOSOI Kei, HOWELL David, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. Journal of Power Sources, 2018, 382:176-178.
[9] GAO Zhonghui, SUN Huabin, LIN Fu, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30 (17):1705702.
[10] SUN Chunwen, LIU Jin, GONG Yudong, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33:363-386.
[11] SCHNELL Joscha, GÜNTHER Till, KNOCHE Thomas, et al. All-solid-state lithium-ion and lithium metal batteries-paving the way to large-scale production[J]. Journal of Power Sources, 2018, 382:160-175.
[12] 李泓. 全固态锂电池:梦想照进现实[J]. 储能科学与技术, 2018, 7 (2):188-193
[13] 许晓雄, 李泓. 为全固态锂电池"正名"[J]. 储能科学与技术, 2018, 7 (1):1-7.
[14] YAO X Y, HUANG B X, YIN J Y, et al. All-solid-state lithium batteries with inorganic solid electrolytes:Review of fundamental science[J]. Chinese Physics B, 2016, 25 (1):216-229.
[15] NAM Young Jin, OH Dae Yang, JUNG Sung Hoo, et al. Toward practical all-solid-state lithium-ion batteries with high energy density and safety:Comparative study for electrodes fabricated by dry-and slurry-mixing processes[J]. Journal of Power Sources, 2018, 375:93-101.
[16] ZHENG Feng, KOTOBUKI Masashi, SONG Shufeng, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2018, 389:198-213.
[17] TAKADA Kazunori. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61 (3):759-770.
[18] 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5 (5):615-626. LI Yang, DING Fei, SANG Lin, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science & Technology, 2016, 5 (5):615-626.
[19] KAMAYA Noriaki, HOMMA Kenji, YAMAKAWA Yuichiro, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10:682.
[20] ANGULAKSHMI N, KUMAR S R, KULANDAINATHAN A M, et al. Composite polymer electrolytes encompassing metal organic frame works:A new strategy for all-solid-state lithium batteries[J]. Journal of Physical Chemistry C, 2014, 118 (42):24240-24247.
[21] CHOUDHURY Snehashis, MANGAL Rahul, AGRAWAL Agrawal, et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nature Communications, 2015, 6:10101.
[22] XU Xiaoxiong, WEN Zhaoyin, WU Jianguo, et al. Preparation and electrical properties of NASICON-type structured Li1.4Al0.4Ti1.6 (PO4)3 glass-ceramics by the citric acid-assisted sol-gel method[J]. Solid State Ionics, 2007, 178 (1):29-34.
[23] HAMON Y, DOUARD A, SABARY F, et al. Influence of sputtering conditions on ionic conductivity of LiPON thin films[J]. Solid State Ionics, 2006, 177 (3):257-261.
[24] CHEN Shaojie, XIE Dongjiu, LIU Gaozhan, et al. Sulfide solid electrolytes for all-solid-state lithium batteries:Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14:58-74.
[25] 许晓雄, 温兆银. 锂离子电池玻璃及玻璃陶瓷固体电解质材料研究[J]. 无机材料学报, 2005, 20 (1):21-26. XU Xiaoxiong, WEN Zhaoyin. Glass and glass-ceramics solid electrolytes for lithium-ion battery[J]. Journal of Inorganic Materials, 2005, 20 (1):21-26.
[26] HAYASHI Akitoshi, HAMA Shigenori, MINAMI Tsutomu, et al. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses[J]. Electrochemistry Communications, 2003, 5 (2):111-114.
[27] TATSUMISAGO Masahiro, NAGAO Motohiro, HAYASHI Akitoshi. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries[J]. Journal of Asian Ceramic Societies, 2013, 1 (1):17-25.
[28] ITO Seitaro, FUJIKI Satoshi, YAMADA Takanobu, et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte[J]. Journal of Power Sources, 2014, 248:943-950.
[29] TSUCHIYA Hajime, AIHARA Yuichi, FUJIKI Satoshi, et al. Electrochemical performance of a large size all-solid-state lithium-ion battery 2[J]. Electrochemical Society, 2013 (5):315.
[30] ZHANG Z, CHEN S, YANG J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. Acs Appl. Mater. Interfaces, 2017, 10 (3):2556-2565.
[31] CHAI Jingchao, LIU Zhihong, MA Jun, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4 (2):1600377.
[32] HE Zijian, CHEN Long, ZHANG Bochen, et al. Flexible poly (ethylene carbonate)/garnet composite solid electrolyte reinforced by poly (vinylidene fluoride-hexafluoropropylene) for lithium metal batteries[J]. Journal of Power Sources, 2018, 392:232-238.
[33] CHEN Long, LI Yutao, LI Shuaipeng, et al. PEO/garnet composite electrolytes for solid-state lithium batteries:From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46:176-184.
[34] 黄祯, 杨菁, 陈晓添, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4 (1):1-18. HUANG Zhen, YANG Jing, CHEN Xiaotian, et al. Research progress of inorganic solid electrolytes in foundmental and application field[J]. Energy Storage Science and Technology, 2015, 4 (1):1-18.
[35] WEI Zhenyao, CHEN Shaojie, WANG Junye, et al. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode[J]. Journal of Power Sources, 2018, 394:57-66. |