[1] MULDOON J, BUCUR C B, GREGORY T. Quest for nonaqueous multivalent secondary batteries:Magnesium and beyond[J]. Chemical Reviews, 2014, 114(23):11683-11720.
[2] WANG D, GAO X W, CHEN Y H, et al. Plating and stripping calcium in an organic electrolyte[J]. Nature Materials, 2018, 17:16-20.
[3] PONROUCH A, FRONTERA C, BARDÉ F, et al. Towards a calcium-based rechargeable battery[J]. Nature Materials, 2015, 15:169-172.
[4] STANIEWICZ R J. A study of the calcium-thionyl chloride electrochemical system[J]. Journal of the Electrochemical Society, 1980, 127(4):782-789.
[5] AURBACH D, SKALETSKY R, GOFER Y. The electrochemical behavior of calcium electrodes in a few organic electrolytes[J]. Journal of the Electrochemical Society, 1991, 138(12):3536-3545.
[6] SAMMELLS A F, SCHUMACHER B. Secondary calcium solid electrolyte high temperature battery[J]. Journal of the Electrochemical Society, 1986, 133(1):235-236.
[7] PONROUCH A, TCHITCHEKOVA D, FRONTERA C, et al. Assessing Si-based anodes for Ca-ion batteries:Electrochemical decalciation of CaSi2[J]. Electrochemistry Communications, 2016, 66:75-78.
[8] KIM H, BOYSEN D A, OUCHI T, et al. Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)[J]. Journal of Power Sources, 2013, 241:239-248.
[9] OUCHI T, KIM H, SPATOCCO B L, et al. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage[J]. Nature Communications, 2016, 7:doi:10.1038/ncomms10999.
[10] WANG M, JIANG C L, ZHANG S Q, et al. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage[J]. Nature Chemistry, 2018, 10:667-672.
[11] GRABNER E W, KALWELLIS-MOHN S. Hexacyanoferrate layers as electrodes for secondary cells[J]. Journal of Applied Electrochemistry, 1987, 17(3):653-656.
[12] WANG R Y, WESSELLS C D, HUGGINS R A, et al. Highly reversible open framework nanoscale electrodes for divalent ion batteries[J]. Nano Letters, 2013, 13(11):5748-5752.
[13] PADIGI P, GONCHER G, EVANS D, et al. Potassium barium hexacyanoferrate-A potential cathode material for rechargeable calcium ion batteries[J]. Journal of Power Sources, 2015, 273:460-464.
[14] PADIGI P, KUPERMAN N, THIEBES J, et al. Calcium cobalt hexacyanoferrate cathodes for rechargeable divalent ion batteries[J]. Journal of New Materials for Electrochemical Systems, 2016, 19(2):57-64.
[15] LIPSON A L, PAN B F, LAPIDUS S H, et al. Rechargeable Ca-ion Batteries:A new energy storage system[J]. Chemistry of Materials, 2015, 27(24):8442-8447.
[16] LIPSON A L, HAN S D, KIM S, et al. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes[J]. Journal of Power Sources, 2016, 325:646-652.
[17] TOJO T, SUGIURA Y, INADA R, et al. Reversible calcium ion batteries using a dehydrated Prussian Blue analogue cathode[J]. Electrochimica Acta, 2016, 207:22-27.
[18] KUPERMAN N, PADIGI P, GONCHER G, et al. High performance Prussian Blue cathode for nonaqueous Ca-ion intercalation battery[J]. Journal of Power Sources, 2017, 342:414-418.
[19] WHITTINGHAM M S. The role of ternary phases in cathode reactions[J]. Journal of the Electrochemical Society, 1976, 123(3):315-320.
[20] AMATUCCI G G, BADWAY F, SINGHAL A, et al. Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide[J]. Journal of the Electrochemical Scociety, 2001, 148(8):A940-A950.
[21] BERVAS M, KLEIN L C, AMATUCCI G G. Vanadium oxide-propylene carbonate composite as a host for the intercalation of polyvalent cations[J]. Solid State Ionics, 2005, 176(37/38):2735-2747.
[22] HAYASHI M, ARAI H, OHTSUKA H, et al. Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts[J]. Journal of Power Sources, 2003, 119-121:617-620.
[23] LIPSON A L, KIM S, PAN B F, et al. Calcium intercalation into layered fluorinated sodium iron phosphate[J]. Journal of Power Sources, 2017, 369:133-137.
[24] CABELLO M, NACIMIENTO F, GONZÁLEZ J R, et al. Advancing towards a veritable calcium-ion battery:CaCo2O4, positive electrode material[J]. Electrochemistry Communications, 2016, 67:59-64.
[25] TCHITCHEKOVA D S, PONROUCH A, VERRELLI R, et al. Electrochemical intercalation of calcium and magnesium in TiS2:Fundamental studies related to multivalent battery applications[J]. Chemistry of Materials, 2018, 30(3):847-856.
[26] SEE K A, GERBEC J A, JUN Y S, et al. A high capacity calcium primary cell based on the Ca-S system[J]. Advanced Energy Materials, 2013, 3(8):1056-1061.
[27] REINSBERG P, BONDUE C J, BALTRUSCHAT H. Calcium-oxygen batteries as a promising alternative to sodium-oxygen batteries[J]. The Journal of Physical Chemistry C, 2016, 120(39):22179-22185.
[28] SHIGA T, KATO Y, HASE Y. Coupling of nitroxyl radical as an electrochemical charging catalyst and ionic liquid for calcium plating/stripping toward a rechargeable calcium-oxygen battery[J]. Journal of Materials Chemistry A, 2017, 5:13212-13219. |