[1] MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable lithiumsulfur batteries[J]. Chemical Reviews, 2014, 114(23):11751-11787.
[2] WU F, CHEN S, SROT V, et al. A sulfur-limonene-based electrode for lithium-sulfur batteries:High-performance by self-protection[J]. Advanced Materials, 2018, 30(13):doi:10.1002/adma.201706643.
[3] MANTHIRAM A, CHUNG S H, ZU C, et al. Lithium-sulfur batteries:Progress and prospects[J]. Advanced Materials, 2015, 27(12):1980-2006.
[4] PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 1(9):doi:10.1038/NENERGY.2016.132.
[5] CHUNG W J, GRIEBEL J J, KI E T, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials[J]. Nature Chemistry, 2013, 5(6):518-524.
[6] YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries:Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50):13186-13200.
[7] LIU X, J. HUANG J Q, ZHANG Q, et al. Nanostructured metal oxides and sulfdes for lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(20):doi:10.1002/adma.201601759.
[8] ZHANG R, CHENG X B, ZHAO C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016, 28(11):2155-2162.
[9] REHMAN S, GUO S J, HOU Y L, et al. Rational design of Si/SiO2@hierarchical porous carbon spheres as effcient polysulfde reservoirs for high-performance Li-S battery[J]. Advanced Materials, 2016, 28(16):3167-3172.
[10] ZHOU G M, PEI S F, LI L, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(4):625-631.
[11] YUAN Z, PENG H J, HOU T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016, 16(1):519-527.
[12] MA Z L, LI Z, HU K, et al. The enhancement of polysulfide absorbsion in Li-S batteries by hierarchically porous CoS2/carbon paper interlayer[J]. Journal of Power Source, 2016, 325:71-78.
[13] MA L, WEI S Y, ZHUANG H L, et al. Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur[J]. J. Mater. Chem. A 2015, 3(39):19857-19866.
[14] ZHANG S S, TRAN D T, et al. Pyrite FeS2 as an effcient adsorbent of lithium polysulphide for improved lithium-sulphur batteries[J]. Journal of Materials Chemistry A, 2016, 4(12):4371-4374.
[15] YANG Y, FEI H L, RUAN G D, et al. Vertically aligned WS2 nanosheets for water splitting[J]. Advanced Functional Materials, 2015, 25(39):6199-6204.
[16] LI Y F, WU D H, ZHOU Z, et al. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects:A computational study[J]. The Journal of Physical Chemistry Letters, 2012, 3(16):2221-2227.
[17] XU X D, LIU W, KIM Y, et al. Nanostructured transition metal sulfdes for lithium ion batteries:Progress and challenges[J]. Nano Today, 2014, 9(5):604-630.
[18] JUNG Y, SHEN J, LIU Y, et al. Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2[J]. Nano Letters, 2014, 14(12):6842-6849.
[19] JARAMILLO T F, JØRGENSEN K P, BONDE J, et al. Identifcation of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834):100-102.
[20] LI D J, MAITI U N, LIM J, et al. Molybdenum sulfde/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction[J]. Nano Letters, 2014, 14(3):1228-1233.
[21] VOIRY D, SALEHI M, SILVA R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction[J]. Nano Letters, 2013, 13(12):6222-6227.
[22] XIE J F, ZHANG H, LI S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40):5807-5813.
[23] TANG K, WANG X F, LI Q, et al. High edge selectivity of in situ electrochemical Pt deposition on edge-rich layered WS2 nanosheets[J]. Advanced Materials, 2018, 30(7):doi:10.1002/adma.201704779.
[24] ZHANG Z Y, WU S L, CHENG J Y, et al. MoS2 nanobelts with (002) plane edges-enriched flat surfaces for high-rate sodium and lithium storage[J]. Energy Storage Materials, 2018, 15:65-74.
[25] WANG H T, ZHANG Q F, YAO H B, et al. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials[J]. Nano Letters, 2014, 14(12):7138-7144.
[26] LI X M, QIAN T Y, ZAI J T, et al. Co stabilized metallic 1Td MoS2 monolayers:Bottom-up synthesis and enhanced capacitance with ultralong cycling stability[J]. Materials Today Energy, 2018, 7:10-17.
[27] WANG H L, YANG Y, LIANG Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7):2644-2647.
[28] ZHAO M Q, LIU X F, ZHANG Q, et al. Graphene/single-walled carbon nanotube hybrids:One-step catalytic growth and applications for highrate Li-S batteries[J]. ACS Nano, 2012, 6(12):10759-10769.
[29] LI X M, ZAI J T, XIANG S, et al. Regeneration of metal sulfdes in the delithiation process:The key to cyclic stability[J]. Advanced Energy Materials, 2016, 6(19):doi:10.10020/aenm.2016010565.
[30] MA L, ZHUANG H L, WEI S Y, et al. Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode[J]. ACS Nano, 2015, 10(1):1050-1059.
[31] WANG T L, SUN C L, YANG M Z, et al. Phase-transformation engineering in MoS2 on carbon cloth as flexible binder-free anode for enhancing lithium storage[J]. Journal of Alloy and Compounds, 2017, 716(5):112-118.
[32] QU Q T, GAO T, ZHENG H Y, et al. Strong surface-bound sulfur in conductive MoO2 matrix for enhancing Li-S battery performance[J]. Advanced Materials Interfaces, 2015, 2(7):doi:10.1002/admi.201500048.
[33] ZHANG Y, ZAI J T, HE K, et al. Fe3C nanoparticles encapsulated in highly crystalline porous graphite:Salt-template synthesis and enhanced electrocatalytic oxygen evolution activity and stability[J]. Chemical Communication, 2018, 54(25):3158-3161.
[34] LEI T Y, CHEN W, HUANG J W, et al. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries[J]. Advanced Energy Materials, 2016, 7(4):doi:10.1002/aenm.201601843.
[35] PANG Q, KUNDU D, CUISINIER M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communication, 2014, 5:doi:10.1038/ncomms5759.
[36] MA L B, ZHANG W J, WANG L, et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries[J]. ACS Nano, 2018, 12(5):4868-4876.
[37] YAO J, MEI T, CUI Z Q, et al. Hollow carbon spheres with TiO2 encapsulated sulfur and polysulfides for long-cycle lithium-sulfur batteries[J]. Chemical Engineering Journal, 2017, 330:644-650.
[38] WANG M, ZAI J T, LI B, et al. Hierarchical Cu2-xSe nanotubes constructed by two-unit-cell-thick nanosheets:Room-temperature synthesis and promoted electrocatalytic activity towards polysulfdes[J]. Journal of Materials Chemistry A, 2016, 4(13):4790-4796.
[39] GHAZI Z A, HE X, KHATTAK A M, et al. MoS2/Celgard separator as effcient polysulfde barrier for long-life lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(21):doi:10.1002/adma.201606817. |