[1] GUIZZI G L, MANNO M, TOLOMEI L M, et al. Thermodynamic analysis of a liquid air energy storage system[J]. Energy, 2015, 93:1639-1647.
[2] ANTONELLI M, BARSALI S, DESIDERI U, et al. Liquid air energy storage:Potential and challenges of hybrid power plants[J]. Applied Energy, 2017, 194:522-529.
[3] PENG H, YANG Y, LI R, et al. Thermodynamic analysis of an improved adiabatic compressed air energy storage system[J]. Applied Energy, 2016, 183:1361-1373.
[4] 何青, 贾明祥, 康浩强, 等. 绝热压缩空气储能系统Aspen Plus软件自定义蓄热器模块设计及应用[J]. 热力发电, 2018, 47(2):114-119. HE Qing, JIA Mingxiang, KANG Haoqiang, et al. Design and application of custom regenerator module in Aspen for adiabatic compressed air energy storage system[J]. Thermal Power Generation, 2018, 47(2):114-119.
[5] 牟春华, 兀鹏越, 孙钢虎, 等. 火电机组与储能系统联合自动发电控制调频技术及应用[J]. 热力发电, 2018, 47(5):29-34. MU Chunhua, WU Pengyue, SUN Ganghu, et al. AGC frequency modulation technology and application for combination of thermal power unit and energy storage system[J]. Thermal Power Generation, 2018, 47(5):29-34.
[6] KIM J, NOH Y, CHANG D. Storage system for distributed-energy generation using liquid air combined with liquefied natural gas[J]. Applied Energy, 2018, 212:1417-1432.
[7] PENG X, SHE X, CONG L, et al. Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage[J]. Applied Energy, 2018, 221:86-99.
[8] ANTONELLI M, DESIDERI U, GIGLIOLI R, et al. Liquid air energy storage:A potential low emissions and efficient storage system[J]. Energy Procedia, 2016, 88:693-697.
[9] BORRI E, TAFONE A, COMODI G, et al. Improving liquefaction process of microgrid scale liquid air energy storage (LAES) through waste heat recovery (WHR) and absorption chiller[J]. Energy Procedia, 2017, 143:699-704.
[10] BORRI E, TAFONE A, ROMAGNOLI A, et al. A preliminary study on the optimal configuration and operating range of a "microgrid scale" air liquefaction plant for liquid air energy storage[J]. Energy Conversion and Management, 2017, 143:275-285.
[11] KHALIL K M, AHMAD A, MAHMOUD S, et al. Liquid air/nitrogen energy storage and power generation system for micro-grid applications[J]. Journal of Cleaner Production, 2017, 164:606-617.
[12] PENG H, SHAN X, YANG Y, et al. A study on performance of a liquid air energy storage system with packed bed units[J]. Applied Energy, 2018, 211:126-135.
[13] ZHANG T, CHEN L, ZHANG X, et al. Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy[J]. Energy, 2018, 155:641-650.
[14] BARSALI S, CIAMBELLOTTI A, GIGLIOLI R, et al. Hybrid power plant for energy storage and peak shaving by liquefied oxygen and natural gas[J]. Applied Energy, 2018, 228:33-41.
[15] TAFONE A, BORRI E, COMODI G, et al. Liquid air energy storage performance enhancement by means of organic rankine cycle and absorption chiller[J]. Applied Energy, 2018, 228:1810-1821.
[16] TAFONE A, ROMAGNOLI A, LI Y, et al. Techno-economic analysis of a liquid air energy storage (LAES) for cooling application in hot climates[J]. Energy Procedia, 2017, 105:4450-4457. |