1 |
陆雅翔, 赵成龙, 容晓晖, 等 . 室温钠离子电池材料及器件研究进展[J]. 物理学报, 2018, 67(12): 120601.
|
|
LU Y X , ZHAO C L , RONG X H , et al . Research progress of materials and devices for room-temperature Na-ion batteries[J]. Acta Physica Sinica, 2018, 67(12): 120601.
|
2 |
LI Y , LU Y , ZHAO C , et al . Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Mater., 2017, 7: 130-151.
|
3 |
PAN H , HU Y S , CHEN L . Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ. Sci., 2013, 6(8): 2338-2360.
|
4 |
LU Y , RONG X , HU Y S , et al . Research and development of advanced battery materials in China[J]. Energy Storage Mater., 2019, 23: 144-153.
|
5 |
HU Y S , KOMABA S , FORSYTH M , et al . A new emerging technology: Na-ion batteries[J]. Small Methods, 2019, 3: 1900184.
|
6 |
PAN H , HU Y S , LI H , et al . Recent progress in structure study of electrode materials for room-temperature sodium-ion stationary batteries[J]. Sci. Sin. Chim., 2014, 44: 1269-1279.
|
7 |
HU Y S , LU Y . 2019 Nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries[J]. ACS Energy Lett., 2019, 4: 2689-2690.
|
8 |
ZHAO C , LU Y , CHEN L , et al . Flexible Na batteries[J]. InfoMat., 2019, 2(1): 126-38.
|
9 |
TAKEDA Y , NAKAHARA K , NISHIJIMA M , et al . Sodium deintercalation from sodium iron oxide[J]. Mater. Res. Bull., 1994, 29: 659-666.
|
10 |
YABUUCHI N , YOSHIDA H , KOMABA S . Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries[J]. Electrochemistry, 2012, 80: 716-719.
|
11 |
YABUUCHI N , KAJIYAMA M , IWATATE J , et al . P2-type Na x [Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nat. Mater., 2012, 11: 512-517.
|
12 |
KIM D , LEE E, SLATER M , et al . Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J]. Electrochem. Commun., 2012, 18: 66-69.
|
13 |
XU S Y , WU X Y , LI Y M , et al . Novel copper redox-based cathode materials for room-temperature sodium-ion batteries[J]. Chin. Phys. B, 2014, 23: 118202.
|
14 |
LI Y , YANG Z , XU S , et al . Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Adv. Sci., 2015, 2: 1500031.
|
15 |
MU L , XU S , LI Y , et al . Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Adv. Mater., 2015, 27: 6928-6933.
|
16 |
RONG X , LIU J , HU E , et al . Structure-induced reversible anionic redox activity in Na layered oxide cathode[J]. Joule, 2018, 2: 125-140.
|
17 |
RONG X , HU E , LU Y , et al . Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J]. Joule, 2019, 3: 503-517.
|
18 |
LI Y , HU Y S , LI H , et al . A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. J. Mater. Chem. A, 2016, 4: 96-104.
|
19 |
LI Y , MU L , HU Y-S , et al . Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Mater., 2016, 2: 139-145.
|
20 |
QI Y , LU Y , DING F , et al . Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries[J]. Angew. Chem. Int. Edit., 2019, 58: 4361-4365.
|
21 |
LI Y , HU Y S , QI X , et al . Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Mater., 2016, 5: 191-197.
|
22 |
LU Y , ZHAO C , QI X , et al . Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Adv. Energy Mater., 2018, 8: 1800108.
|
23 |
MENG Q , LU Y , DING F , et al . Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Lett., 2019, 4(11): 2608-2612.
|
24 |
方铮, 曹余良, 胡勇胜, 等 . 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158.
|
|
FANG Z , CAO Y L , HU Y S , et al . Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158.
|