储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 77-86.doi: 10.19799/j.cnki.2095-4239.2020.0205
收稿日期:
2020-06-08
修回日期:
2020-08-04
出版日期:
2021-01-05
发布日期:
2021-01-08
通讯作者:
郁亚娟
E-mail:lnaslixi@163.com;04575@bit.edu.cn
作者简介:
李茜(1996—),女,硕士研究生,主要从事储能材料环境评价方面的研究,E-mail:基金资助:
Xi LI1(), Yajuan YU1(), Zhiqi ZHANG1, Lei WANG1, Kai HUANG2
Received:
2020-06-08
Revised:
2020-08-04
Online:
2021-01-05
Published:
2021-01-08
Contact:
Yajuan YU
E-mail:lnaslixi@163.com;04575@bit.edu.cn
摘要:
固态锂电池由于具有安全性高、能量密度高等优势,已成为未来锂电池发展的必经之路。其中,固态电解质作为固态电池区别于传统液态电池的核心部件,已逐渐受到各国重视。本文介绍了三类固态电解质:聚合物、氧化物和硫化物固态电解质,分析了目前最新研究进展和突出研究成果。其中,聚合物电解质具有黏弹性好、机械加工性能优、质量轻等特点。氧化物固态电解质研究时间较长,本文简要介绍了钙钛矿型、NASICON型、Garnet型电解质。而硫化物电解质因具有较高的离子电导率,近年来也广受关注。最后对固态电解质的专利申请进行分析,期于让读者了解不同地区固态电解质的研究水平与进展,倡议加大相关研究经费的投入,为相关企业、高校寻求合作提供选择与建议。
中图分类号:
李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86.
Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 77-86.
表1
专利主要申请人"
排名 | 申请人 | 专利数量/件 | 占总数比例/% |
---|---|---|---|
1 | TOYOTA JIDOSHA KK (丰田株式会社) | 293 | 11.47 |
2 | FUJI FILM CORP(富士胶片株式会社) | 134 | 5.24 |
3 | MURATA MFG CO LTD(村田株式会社) | 82 | 3.21 |
4 | IDEMITSU KOSAN CO LTD (出光兴产株式会社) | 61 | 2.39 |
5 | HITACHI ZOSEN CORP (日立造船株式会社) | 47 | 1.84 |
6 | NGK INSULATORS LTD(NGK绝缘子株式会社) | 45 | 1.76 |
7 | PANASONIC INTELLECTUAL PROPERTY MANAGEME (松下知识产权管理) | 45 | 1.76 |
8 | TOYOTA MOTOR CORP (日本丰田汽车公司) | 45 | 1.76 |
9 | TDK CORP (TDK株式会社) | 40 | 1.57 |
10 | SAMSUNG ELECTRONICS CO LTD (三星电子有限公司) | 38 | 1.49 |
表2
固态电解质专利申请的技术领域分布"
序号 | IPC | 技术领域 | 数量 |
---|---|---|---|
1 | H01M-010/0562 | 二次电解质,电解质为固体材料 | 1067 |
2 | H01M-010/052 | 锂二次蓄电池 | 763 |
3 | H01M-004/62 | 活性物质中非活性材料成分的选择,例如胶合剂、填料 | 579 |
4 | H01M-010/0525 | 摇椅式电池,即两个电极插入或嵌入有锂的电池;锂离子电池 | 517 |
5 | H01M-010/0585 | 只具有板条结构元件,即板条式正极、负极、隔离件的蓄电池 | 418 |
6 | H01M-004/13 | 非水电解质蓄电池的电极;其制造方法 | 348 |
7 | H01B-001/06 | 主要由其他非金属物质组成的导体或导电物体 | 311 |
8 | H01M-010/058 | 非水电解质(H01M-010/39优先)构造或制造 | 283 |
9 | H01M-004/36 | 作为活性物质、活性体、活性液体的材料选择 | 249 |
10 | H01M-010/0565 | 高分子有机材料,例如凝胶或固体型的锂蓄电池 | 235 |
1 | 刘鲁静, 贾志军, 郭强等. 全固态锂离子电池技术进展及现状[J]. 过程工程学报, 2019, 19(5): 900-909. |
2 | CHEN R, QU W, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons[J]. Mater Horiz, 2016, 3: 487-516. |
3 | 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626. |
LI Yang, DING Fei, SANG Lin, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626. | |
4 | MAUGER A, JULIEN C, PAOLELLA A, et al. Building better batteries in the solid state: A review[J]. Materials, 2019, 12: doi: 10.3390/ma12233892. |
5 | JITTI K, BRUCE P. All-solid-state batteries and their remaining challenges[J]. Johnson Matthey Technology Review, 2018, 62(2): 177-180. |
6 | WAN J, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nano-porous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711. |
7 | COMMARIEU B, PAOLELLA A. Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries[J]. Journal of Power Sources, 2019, 436: doi: 10.1016/j.jpowsour.2019.226852. |
8 | SHIM J, KIM L, KIM H, et al. All-solid-state lithium metal battery with solid polymer electrolytes based on polysiloxane crosslinked by modified natural gallic acid[J]. Polymer, 2017, 122: 222-231. |
9 | LIU K, ZHANG Q, THAPALIYA B, et al. In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries[J]. Solid State Ionics, 2020, 345: doi: 10.1016/j.ssi.2019.115159. |
10 | DIRICAN M, YAN C, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Materials Science and Engineering, 2018, 136: 27-46. |
11 | SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386. |
12 | LEO C, SUBBA R, CHOWDARI B. Studies on plasticized PEO-lithium triflate-ceramic filler composite electrolyte system[J]. Solid State Ionics, 2002, 148(1/2): 159-171. |
13 | LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. |
14 | CHEN S, WANG J, ZHANG Z, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources, 2018, 387(31): 72-80. |
15 | 马丹丹. 聚合物电解质的合成在锂离子电池中的应用研究[D]. 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2018. |
16 | YUE H, LI J, WANG Q, et al. Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 268-274. |
17 | 刘明珠. 锂电池用新型聚硅氧烷基固体电解质的制备及其性能研究[D]. 杭州: 浙江大学, 2018. |
18 | LI J, LIN Y, YAO H, et al. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane[J]. ChemSusChem, 2014, 7(7): 1901-1908. |
19 | LIU M, JIN B, ZHANG Q, et al. High-performance solid polymer electrolytes for lithium ion batteries based on sulfobetaine zwitterion and poly (ethylene oxide) modified polysiloxane[J]. Journal of Alloys & Compounds, 2018, 742: 619-628. |
20 | LIU J, XU J, LIN Y, et al. All-solid-state lithium ion battery: research and industrial prospects[J]. Acta Chimica Sinica, 2013, 71(6): 869-878. |
21 | 吕晓娟, 孟繁丽, 吴亚楠. 钙钛矿型固体锂离子电解质的研究进展[J]. 中国陶瓷, 2019, 55(4): 1-6. |
22 | LU J, LI Y, DING Y. Structure, stability, and ionic conductivity of perovskite Li2x-ySr1-x-yLayTiO3 solid electrolytes[J]. Ceramics International, 2019, 46: 7741-7747. |
23 | HU Z, SHENG J, CHEN J, et al. Enhanced Li-ion conductivity in Ge-doped Li0.33La0.56TiO3 perovskite solid electrolytes for all-solid-state Li-ion batteries[J]. New Journal of Chemistry, 2018, 42: 9074-9079. |
24 | WANG S, DING Y, ZHOU G, et al. Durability of the Li1+xTi2-xAlx(PO4)3 solid electrolyte in lithium-sulfur batteries[J]. ACS Energy Letters, 2016, 1(6): 1080-1085. |
25 | LAI Y, SUN Z, JIANG L, et al. Rapid sintering of ceramic solid electrolytes LiZr2(PO4)3 and Li1.2Ca0.1Zr1.9(PO4)3 using a microwave sintering process at low temperatures[J]. Ceramics International, 2019, 45: 11068-11072. |
26 | TAN G, FENG W, LI L, et al. Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries[J]. Journal of Physical Chemistry C, 2012, 116(5): 3817-3826. |
27 | GAI J, ZHAO E, MA F, et al. Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site[J]. Journal of the European Ceramic Society, 2018, 38(4): 1673-1678. |
28 | GIDEON A, INGO B, JULIAN S. One-pot synthesis of polymeric LiPON[J]. Polymer, 2020, 192: doi: 10.1016/j.polymer.2020.122300. |
29 | SUZUKI N, INABA T, SHIGA T. Electrochemical properties of LiPON films made from a mixed powder target of Li3PO4 and Li2O[J]. Thin Solid Films, 2012, 520(6): 1821-1825. |
30 | CHEN S, XIE D, LIU G, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74. |
31 | WU Z, XIE Z, YOSHIDA A, et al. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 367-385. |
32 | HU P, ZHANG Y, CHI X, et al. Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9672-9678. |
33 | CHEN S, WEN K, FAN J, et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: From liquid to solid electrolytes[J]. Journal of Materials Chemistry A, 2018, 6(25): 11631-11663. |
34 | WU Z, XIE Z, YOSHIDA A, et al. Novel SeS2 doped Li2S-P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries[J]. Chemical Engineering Journal, 2019, 380: 122-132. |
35 | CENGIZ M, OH H, LEE S. Lithium dendrite growth suppression and ionic conductivity of Li2S-P2S5-P2O5 glass solid electrolytes prepared by mechanical milling[J]. Journal of the Electrochemical Society, 166(16): A3997-A4004. |
36 | LU P, DING F, XU Z, et al. Study on (100-x)(70Li2S -30P2S5)-xLi2ZrO3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2017, 356: 163-171. |
37 | UJIIE S, HAYASHI A, TATSUMISAGO M. Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes[J]. Solid State Ionics, 2012, 211: 42-45. |
38 | XU R, XIA X, WANG X, et al. Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2829-2834. |
39 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
40 | ZHANG Q, HU J, CHU Y, et al. Electrochemical performance of sulfide solid electrolyte Li10GeP2S12 synthesized by a new method[J]. Materials Letters, 2019, 248: 153-156. |
41 | SUN Y, YAN W, AN L, et al. A facile strategy to improve the electrochemical stability of a lithium ion conducting Li10GeP2S12 solid electrolyte[J]. Solid State Ionics, 2017, 301: 59-63. |
42 | ZHANG Y, CHEN R, LIU T, et al. High capacity and superior cyclic performances of all-solid-state lithium batteries enabled by a glass-ceramics solo[J]. ACS Applied Materials & Interfaces, 2018, doi: 10.1021/acsami.7b18211. |
43 | 张波, 崔光磊, 刘志宏, 等. 无机固态锂电池专利分析[J]. 储能科学与技术, 2017, 6(2): 307-315. |
ZHANG Bo, CUI Guanglei, LIU Zhihong, et al. Patentmetrics on lithium-ion battery based on inorganic solid electrolyte[J]. Energy Storage Science and Technology, 2017, 6(2): 307-315. | |
44 | 芮雯奕, 姜疆, 宋海燕, 等. 固态锂电池全球专利分析[J]. 电池, 2018, 48(6): 417-420. |
RUI Wenyi, JIANG Jiang, SONG Haiyan, et al. Global patent analysis on solid-state lithium battery[J]. Battery Bimonthly, 2018, 48(6): 417-420. | |
45 | 王琳, 陈万朋, 庄卫东, 等. 全固态锂电池专利申请现状及发展趋势分析[J]. 电源技术, 2018, 42(3): 455-458. |
WANG Lin, CHEN Wangpeng, ZHUANG Weidong, et al. Current status and development trends of patent application in all solid state lithium battery[J]. Chinese Journal of Power Sources, 2018, 42(3): 455-458. |
[1] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[2] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[3] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[4] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
[5] | 汤匀, 岳芳, 郭楷模, 李岚春, 柯旺松, 陈伟. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. |
[6] | 靳文婷, 廖满生, 黄骥, 魏子栋. 车用高能量密度锂离子电池技术发展态势[J]. 储能科学与技术, 2022, 11(1): 350-358. |
[7] | 蒋苗, 万红利, 刘高瞻, 翁伟, 王超, 姚霞银. Co0.1Fe0.9S2@Li7P3S11正极材料的制备及其在全固态锂电池中的性能[J]. 储能科学与技术, 2021, 10(3): 925-930. |
[8] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[9] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[10] | 崔言明, 张秩华, 黄园桥, 林久, 姚霞银, 许晓雄. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3): 836-847. |
[11] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[12] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
[13] | 高鹏, 张珊, 贲留斌, 赵文武, 刘中柱, 朱永明, 黄学杰. 铌元素在锂离子电池中的应用[J]. 储能科学与技术, 2020, 9(5): 1443-1453. |
[14] | 高舒, 周敏, 韩静, 过聪, 谭媛, 蒋凯, 王康丽. 钠离子电池聚合物电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1300-1308. |
[15] | 彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||