储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 781-799.doi: 10.19799/j.cnki.2095-4239.2021.0139
• 固态离子学与储能专刊 • 下一篇
收稿日期:
2021-04-02
修回日期:
2021-04-10
出版日期:
2021-05-05
发布日期:
2021-04-30
通讯作者:
温兆银
E-mail:yyhu@mail.sic.ac.cn;zywen@mail.sic.ac.cn
作者简介:
胡英瑛(1985—),女,博士,副研究员,研究方向为储能钠电池的材料与器件,E-mail:基金资助:
Yingying HU(), Xiangwei WU, Zhaoyin WEN()
Received:
2021-04-02
Revised:
2021-04-10
Online:
2021-05-05
Published:
2021-04-30
Contact:
Zhaoyin WEN
E-mail:yyhu@mail.sic.ac.cn;zywen@mail.sic.ac.cn
摘要:
钠硫电池作为一种重要的储能技术,已在全球储能市场拥有GW·h级的装机容量,然而其安全问题一直倍受关注,成为制约其产业大规模发展的一大要素。本文首先介绍储能钠硫电池的结构、工作原理及其工程化发展现状,再针对高温钠硫电池应用中存在的安全隐患问题,从电池的电芯层面到模组层面,提出提高钠硫电池安全性能的解决策略。着重综述了基于固体电解质增韧、降低固体电解质局部电流密度、增强封接材料的热机械稳定性、电芯外壳防腐蚀、电池保温箱热管理与火源阻隔等安全策略的材料和结构设计方面的研发进展,最后对高安全性钠硫电池未来在低温化和液流化的研发方向作出设想和展望。
中图分类号:
胡英瑛, 吴相伟, 温兆银. 储能钠硫电池的工程化研究进展与展望[J]. 储能科学与技术, 2021, 10(3): 781-799.
Yingying HU, Xiangwei WU, Zhaoyin WEN. Progress and prospect of engineering research on energy storage sodium sulfur battery—Material and structure design for improving battery safety[J]. Energy Storage Science and Technology, 2021, 10(3): 781-799.
1 | KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: doi: 10.1016/j.est.2019.101047. |
2 | SHAQSI A Z, SOPIAN K, AL-HINAI A. Review of energy storage services, applications, limitations, and benefits[J]. Energy Reports, 2020, 6: 288-306. |
3 | BULLICH-MASSAGUÉ E, CIFUENTES-GARCíA F J, GLENNY-CRENDE I, et al. A review of energy storage technologies for large scale photovoltaic power plants[J]. Applied Energy, 2020, 274: doi: 10.1016/j.apenergy.2020.115213. |
4 | BORETTI A. Energy storage needs for an Australian national electricity market grid without combustion fuels[J]. Energy Storage, 2019, 2(1): doi: 10.1002/est2.92. |
5 | DENHOLM P, NUNEMAKER J, GAGNON P, et al. The potential for battery energy storage to provide peaking capacity in the United States[J]. Renewable Energy, 2020, 151: 1269-1277. |
6 | 国家发展与改革委员会, 国家能源局. 能源发展"十三五"规划[EB/OL]. 2016. http://www.nea.gov.cn/135989417_14846217874961n.pdf |
7 | 中国石油化工集团公司经济技术研究院. 中国能源化工产业发展报告2020[M]. 北京: 中国石化出版社, 2020: 10-20. |
8 | 国家能源局. 能源化工产业进入低碳转型关键期[EB/OL]. 2020. http://www.nea.gov.cn/2020-12/28/c_139624040.htm. |
9 | 国家能源局. 2019年风电并网运行情况[EB/OL]. 2020. http://www.nea.gov.cn/2020-02/28/c_138827910.htm. |
10 | HITTINGER E, CIEZ R E. Modeling costs and benefits of energy storage systems[J]. Annual Review of Environment and Resources, 2020, 45(1): 445-469. |
11 | NIKOLAIDIS P, POULLIKKAS A. Cost metrics of electrical energy storage technologies in potential power system operations[J]. Sustainable Energy Technologies and Assessments, 2018, 25: 43-59. |
12 | RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 2020, 223: doi: 10.1016/j.enconman.2020.113295. |
13 | 缪平, 姚祯, LEMMON J, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678. |
MIAO P, YAO Z, LEMMON J, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678. | |
14 | BORRI E, TAFONE A, ROMAGNOLI A, et al. A review on liquid air energy storage: History, state of the art and recent developments[J]. Renewable and Sustainable Energy Reviews, 2021, 137: doi: 10.1016/j.rser.2020.110572 |
15 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
16 | NIKIFORIDIS G, VAN DE SANDEN M C, TSAMPAS M N. High and intermediate temperature sodium-sulfur batteries for energy storage: Development, challenges and perspectives[J]. RSC Advances, 2019, 9(10): 5649-5673. |
17 | 胡英瑛, 温兆银, 芮琨, 等. 钠电池的研究与开发现状[J]. 储能科学与技术, 2013, 2(2): 81-90. |
HU Y Y, WEN Z Y, RUI K, et al. State-of-the-art research and development status of sodium batteries[J]. Energy Storage Science and Technology, 2013, 2(2): 81-90. | |
18 | WANG Y, ZHOU D, PALOMARES V, et al. Revitalising sodium-sulfur batteries for non-high-temperature operation: A crucial review[J]. Energy & Environmental Science, 2020, 13(11): 3848-3879. |
19 | KUMAR D, RAJOURIA S K, KUHAR S B, et al. Progress and prospects of sodium-sulfur batteries: A review[J]. Solid State Ionics, 2017, 312: 8-16. |
20 | ANDRIOLLO M, BENATO R, DAMBONE S S, et al. Energy intensive electrochemical storage in Italy: 34.8 MW sodium-sulphur secondary cells[J]. Journal of Energy Storage, 2016, 5: 146-155. |
21 | WEN Z, HU Y, WU X, et al. Main challenges for high performance NAS battery: Materials and interfaces[J]. Advanced Functional Materials, 2013, 23(8): 1005-1018. |
22 | SUDWORTH J L, TILLEY A R. The sodium sulphur battery[M]. New York: Chapman and Hall Ltd., 1985: 133-140. |
23 | SANGSTER J, PELTON A D. The Na-S (sodium-sulfur) system[J]. Journal of Phase Equilibria, 1997, 18(1): 89-96. |
24 | STEUDEL R, STEUDEL Y. Polysulfide chemistry in sodium-sulfur batteries and related systems—A computational study by G3X(MP2) and PCM calculations[J]. Chemistry, 2013, 19(9): 3162-3176. |
25 | CHATTERJI D. Development of sodium-sulfur batteries for utility application[M]. United States: NASA STI/Recon Technical Report N, 1976. |
26 | SUDWORTH J L. The sodium/sulphur battery[J]. Journal of Power Sources, 1984, 11(1): 143-154. |
27 | CHANG R, MINCK R. Sodium sulfur battery flight experiment definition study[J]. Journal of Power Sources, 1990, 29(3/4): 555-563. |
28 | DEGRUSON J A. The 1991 NASA aerospace battery workshop[M]. United States: NASA Marshall Space Flight Centre, 1991: 583-605. |
29 | TAMAKOSHI T. Development of sodium sulfur battery and application[C]//Grand Renewable Energy 2018 Proceedings, Japan: 2018, doi: https://doi.org/10.24752/gre.1.0_286. |
30 | WEN Z, GU Z, XU X, et al. Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries[J]. Journal of Power Sources, 2008, 184(2): 641-645. |
31 | WEN Z, CAO J, GU Z, et al. Research on sodium sulfur battery for energy storage[J]. Solid State Ionics, 2008, 179: 1697-1701. |
32 | 张建平, 韩熠, 刘宇, 等. Weibull拟合的钠硫电池加热模块温升分析[J]. 哈尔滨工业大学学报, 2015, 47(3): 111-115. |
ZHANG J P, HAN Y, LIU Y, et al. Temperature rise analysis of heating module for sodium-sulfur battery based on Weibull fitting[J]. Journal of Harbin Institute of Technology, 2015, 47(3): 111-115. | |
33 | 张建平, 韩熠, 刘宇, 等. 储能钠硫电池保温层优化设计[J]. 北京航空航天大学学报, 2014, 40(12): 1648-1653. |
ZHANG J P, HAN Y, LIU Y, et al. Optimal design for thermal insulation layers of energy-storage sodium-sulfur batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1648-1653. | |
34 | SONG S, WEN Z, LIU Y. The effect of substitution of Bi2O3 for alkali oxides on thermal properties, structure and wetting behavior of the borosilicate glass[J]. Materials Letters, 2010, 64(9): 1025-1027. |
35 | HUANG Y, WEN Z, YANG J, et al. Study of La0.8Sr0.2Co0.2Cr0.8O3-δas a candidate coating material for the positive current collector in Na/S battery[J]. Solid State Ionics, 2011, 192(1): 364-367. |
36 | XU Y, JUNG K, PARK Y C, et al. Selection of container materials for modern planar sodium sulfur (NaS) energy storage cells towards higher thermo-mechanical stability[J]. Journal of Energy Storage, 2017, 12: 215-225. |
37 | MIN J K, LEE C H. Numerical study on the thermal management system of a molten sodium-sulfur battery module[J]. Journal of Power Sources, 2012, 210: 101-109. |
38 | KIM G, PARK Y C, LEE Y, et al. The effect of cathode felt geometries on electrochemical characteristics of sodium sulfur (NaS) cells: Planar vs. tubular[J]. Journal of Power Sources, 2016, 325: 238-245. |
39 | POSCO, Research Institute Of Industrial Science & Technology. Cathode manufacturing device for sodium sulfur battery: KR1020130130450A[P]. 2013-12-02. |
40 | Research Institute Of Industrial Science & Technology. Sodium sulfur battery and manufacturing method of solid electrolyte for sodium sulfur battery: KR101557490B1[P]. 2015-07-07. |
41 | Research Institute Of Industrial Science & Technology. Sodium injection device and method for sodium sulfur battery: KR1020160078736A[P]. 2016-07-05. |
42 | NGK Insulators. NAS battery fire incident and response[EB/OL].2011. https://www.ngk-insulators.com/en/news/20111028_9299.html |
43 | MIN J K, STACKPOOL M, SHIN C H, et al. Cell safety analysis of a molten sodium-sulfur battery under failure mode from a fracture in the solid electrolyte[J]. Journal of Power Sources, 2015, 293: 835-845. |
44 | FIELDER W L, SINGER J. Solubility, stability, and electrochemical studies of sulfur-sulfide solutions in organic solvents[M]. NASA Tech. Pap., 1978: 1-40. |
45 | OEI D G. Sodium-sulfur system. I. Differential thermal analysis[J]. Inorganic Chemistry, 1973, 12(2): 435-437. |
46 | GUPTA N K, TISCHER R P. Thermodynamic and physical properties of molten sodium polysulfides from open-circuit voltage measurements[J]. Journal of the Electrochemical Society, 1972, 119(8): doi: 10.1149/1.2404389. |
47 | OHI J M. Environmental, health, and safety issues of sodium sulfur batteries for electric and hybrid vehicles[M]. United States: National Renewable Energy Lab, 1992: 4-18. |
48 | BITO A. Overview of the sodium-sulfur (NAS) battery[C]//IEEE Stationary Battery Committee Power Engineering Society General Meeting, San Francisco, CA, USA, 2005. |
49 | ZHANG C, WEI Y L, CAO P F, et al. Energy storage system: Current studies on batteries and power condition system[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3091-3106. |
50 | LUO X, WANG J, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy, 2015, 137: 511-536. |
51 | BETTMAN M, PETERS C R. Crystal structure of Na2O.MgO.5Al2O3 with reference to Na2O.5Al2O3 and other isotypal compounds[J]. Journal of Physical Chemistry, 1969, 73(6): doi: 10.1021/j100726a024. |
52 | BREITER M W, DUNN B, POWERS R W. Asymmetric behavior of beta″-alumina[J]. Electrochimica Acta, 1980, 25(5): 613-616. |
53 | CHI C, KATSUI H, GOTO T. Effect of Li addition on the formation of Na-beta/beta''-alumina film by laser chemical vapor deposition[J]. Ceramics International, 2017, 43(1): 1278-1283. |
54 | BIRNIE D P. On the structural integrity of the spinel block in the β"-alumina structure[J]. Acta Crystallographica Section B, Structural Science, 2012, 68: 118-122. |
55 | ZHU C, XUE J. Structure and properties relationships of beta-Al2O3 electrolyte materials[J]. Journal of Alloys and Compounds, 2012, 517: 182-185. |
56 | ZHAO C, LIU L, QI X, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201703012. |
57 | SUDWORTH J L. High-temperature battery systems[J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 1996, 354(1712): 1595-1611. |
58 | DUNN S, KUMAR R V, FRAY D J. Thermodynamic studies of the ionic conductor Ba beta-Al2O3[J]. Solid State Ionics, 2000, 128(1/2/3/4): 141-144. |
59 | VIRKAR A V, MILLER G R, GORDON R S. Resistivity microstructure relations in lithia-stabilized polycrystalline beta''-alumina[J]. Journal of the American Ceramic Society, 1978, 61(5/6): 250-252. |
60 | LEE S T, KIM S G, JANG M H, et al. The phase relationship of Na+-beta-aluminas synthesized by a sol-gel process in the ternary system Na2O-Al2O3-Li2O[J]. Journal of Ceramic Processing Research, 2010, 11(1): 86-91. |
61 | ZHOU C T, BAG S, THANGADURAI V. Engineering materials for progressive all-solid-state Na batteries[J]. ACS Energy Letters, 2018, 3(9): 2181-2198. |
62 | JIAN Z, HU Y S, JI X, et al. NASICON-structured materials for energy storage[J]. Advanced Materials, 2017, 29(20): doi: 10.1002/adma.201601925. |
63 | SONG S, DUONG H M, KORSUNSKY A M, et al. A Na+ superionic conductor for room-temperature sodium batteries[J]. Science Reports, 2016, 6: doi: 10.1038/srep32330. |
64 | CHEN S Q, WU C, SHEN L F, et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201700431. |
65 | ANANTHARAMULU N, KOTESWARA RAO K, RAMBABU G, et al. A wide-ranging review on Nasicon type materials[J]. Journal of Materials Science, 2011, 46(9): 2821-2837. |
66 | SCHMID H, JONGHE L C, CAMERON C. Chemical stability of Nasicon[J]. Solid State Ionics, 1982, 6(1): 57-63. |
67 | PARK H, JUNG K, NEZAFATI M, et al. Sodium ion diffusion in NASICON (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27814-27824. |
68 | TANIBATA N, DEGUCHI M, HAYASHI A, et al. All-solid-state Na/S batteries with a Na3PS4 electrolyte operating at room temperature[J]. Chemistry of Materials, 2017, 29(12): 5232-5238. |
69 | YUE J, HAN F D, FAN X L, et al. High-performance all-inorganic solid-state sodium-sulfur battery[J]. ACS Nano, 2017, 11(5): 4885-4891. |
70 | SADIKIN Y, BRIGHI M, SCHOUWINK P, et al. Superionic conduction of sodium and lithium in anion-mixed hydroborates Na3BH4B12H12 and (Li0.7Na0.3)3BH4B12H12[J]. Advanced Energy Materials, 2015, 5(21): doi: 10.1002/aenm.201501016. |
71 | KROON A P, SCHAEFER G W, ALDINGER F. Direct synthesis of binary K-beta- and K-beta''-alumina. 1. Phase relations and influence of precursor chemistry[J]. Chemistry of Materials, 1995, 7(5): 878-887. |
72 | WANG Z H, LI X J, FENG Z P. The effect of CTAB on the citrate sol-gel process for the synthesis of sodium beta-alumina nano-powders[J]. Bulletin of the Korean Chemical Society, 2011, 32(4): 1310-1314. |
73 | SHAN S J, YANG L P, LIU X M, et al. Preparation and characterization of TiO2 doped and MgO stabilized Na-β''-Al2O3 electrolyte via a citrate sol-gel method[J]. Journal of Alloys and Compounds, 2013, 563: 176-179. |
74 | LA ROSA D, MONFORTE G, D'URSO C, et al. Enhanced ionic conductivity in planar sodium-beta"-alumina electrolyte for electrochemical energy storage applications[J]. ChemSusChem, 2010, 3(12): 1390-1397. |
75 | LEE S T, LEE D H, KIM J S, et al. Influence of Fe and Ti addition on properties of Na+-beta/beta''-alumina solid electrolytes[J]. Metals and Materials International, 2017, 23(2): 246-253. |
76 | TIAN B L, CHEN C, LI Y R, et al. Sodium beta-alumina thin films as gate dielectrics for AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors[J]. Chinese Physics B, 2012, 21(12): 335-339. |
77 | MALI A, PETRIC A. Synthesis of sodium beta''-alumina powder by sol-gel combustion[J]. Journal of the European Ceramic Society, 2012, 32(6): 1229-1234. |
78 | SUBASRI R, MATHEWS T, SREEDHARAN O M, et al. Microwave processing of sodium beta alumina[J]. Solid State Ionics, 2003, 158(1/2): 199-204. |
79 | FLOR G, MARINI A, MASSAROTTI V, et al. Reactivity of beta-aluminas with water[J]. Solid State Ionics, 1981, 2(3): 195-204. |
80 | ZHANG G, WEN Z, WU X, et al. Sol-gel synthesis of Mg2+ stabilized Na-β″/β-Al2O3 solid electrolyte for sodium anode battery[J]. Journal of Alloys and Compounds, 2014, 613: 80-86. |
81 | YI E, TEMECHE E, LAINE R M. Superionically conducting β''-Al2O3 thin films processed using flame synthesized nanopowders[J]. Journal of Materials Chemistry A, 2018, 6(26): 12411-12419. |
82 | VIRKAR A V, TENNENHO G J, GORDON R S. Hot-pressing of Li2O-stabilized beta''-alumina[J]. Journal of the American Ceramic Society, 1974, 57(11): 508-508. |
83 | WHALEN T J, TENNENHO G J, MEYER C. Relation of properties to microstructure in a beta''-alumina ceramic[J]. Journal of the American Ceramic Society, 1974, 57(11): 497-498. |
84 | VIRKAR A V, GORDON R S. Fracture properties of polycrystalline lithia-stabilized beta''-alumina[J]. Journal of the American Ceramic Society, 1977, 60(1/2): 58-61. |
85 | VISWANATHAN L, IKUMA Y, VIRKAR A V. Transfomation toughening of β''-extacutedbl-alumina by incorporation of zirconia[J]. Journal of Materials Science, 1983, 18(1): 109-113. |
86 | LANGE F F, DAVIS B I, AKSAY I A. Processing-related fracture origins: III, Differential sintering of ZrO2 agglomerates in Al2O3/ZRO2 composite[J]. Journal of the American Ceramic Society, 1983, 66(6): 407-408. |
87 | GREEN D J. Transformation toughening and grain size control in β″-Al2O3/ZrO2 composites[J]. Journal of Materials Science, 1985, 20(7): 2639-2646. |
88 | SHENG Y, SARKAR P, NICHOLSON P S. The mechanical and electrical properties of ZrO2-Na β″-Al2O3 composites[J]. Journal of Materials Science, 1988, 23(3): 958-967. |
89 | YANG L P, SHAN S J, WEI X L, et al. The mechanical and electrical properties of ZrO2-TiO2-Na-β/β″-alumina composite electrolyte synthesized via a citrate sol-gel method[J]. Ceramics International, 2014, 40(7): 9055-9060. |
90 | HEAVENS S N. Strength improvement in beta″-alumina by incorporation of zirconia[J]. Journal of Materials Science, 1988, 23(10): 3515-3518. |
91 | SMAGA J A, BATTLES J E. Behaviour of beta-alumina in Na and Na2Sx melts[J]. Journal of Materials Science Letters, 1985, 4(5): 553-557. |
92 | ANSELL R. The chemical and electrochemical stability of beta-alumina[J]. Journal of Materials Science, 1986, 21(2): 365-379. |
93 | VIRKAR A V, MILLER G R. Fast ion transport in solids[M]. New York: Elsevier-North Holland, 1979: 15-40. |
94 | VIRKAR A V, VISWANATHAN L, BISWAS D R. On the deterioration of sextacutedbl-alumina ceramics under electrolytic conditions[J]. Journal of Materials Science, 1980, 15(2): 302-308. |
95 | FELDMAN L A, JONGHE L C. Initiation of modeIdegradation in sodium-beta alumina electrolytes[J]. Journal of Materials Science, 1982, 17(2): 517-524. |
96 | VISWANATHAN L, VIRKAR A V. Wetting characteristics of sodium on β″-alumina and on nasicon[J]. Journal of Materials Science, 1982, 17(3): 753-759. |
97 | HU Y, WEN Z, WU X, et al. Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application[J]. Journal of Power Sources, 2012, 219: 1-8. |
98 | BUECHELE A C, DEJONGHE L C. Microstructure and ionic resistivity of calcium-containing sodium beta-alumina[J]. American Ceramic Society Bulletin, 1979, 58(9): 861-864. |
99 | YASUI I, DOREMUS R H. Effects of calcium, potassium, and iron ions on degradation of beta''-alumina[J]. Journal of the Electrochemical Society, 1978, 125(7): 1007-1010. |
100 | HUESO K B, PALOMARES V, ARMAND M, et al. Challenges and perspectives on high and intermediate-temperature sodium batteries[J]. Nano Research, 2017, 10(12): 4082-4114. |
101 | LU X, LI G, KIM J Y, et al. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage[J]. Nature Communications, 2014, 5(1): doi: 10.1038/ncomms5578. |
102 | BARROW P, WRIGHT M L. Method of preparing ceramic surfaces for wetting thereof by alkali metals: US4797332[P]. 1989-01-10. |
103 | CHANG H J, LU X C, BONNETT J F, et al. Decorating β''-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures[J]. Journal of Materials Chemistry A, 2018, 6(40): 19703-19711. |
104 | HU Y, WEN Z, WU X. Porous iron oxide coating on β″-alumina ceramics for Na-based batteries[J]. Solid State Ionics, 2014, 262: 133-137. |
105 | HU Y, WEN Z, WU X, et al. Nickel nanowire network coating to alleviate interfacial polarization for Na-beta battery applications[J]. Journal of Power Sources, 2013, 240: 786-795. |
106 | WRIGHT M L, HAMES M D. Sodium sulphur cells: US 4356241[P]. 1982-10-26. |
107 | WANG J, HU Y, LI Y, et al. Reversible AlCl4-/Al2Cl7- conversion in a hybrid Na-Al battery[J]. Journal of Power Sources, 2020, 453: doi: 10.1016/j.jpowsour.2020.227843. |
108 | WEBER N, JONES I W. Alkali metal electrochemical cell with coated solid electrolyte: WO 1991006133A1[P]. 1991-05-02. |
109 | SONG S, WEN Z, ZHANG Q, et al. A novel Bi-doped borosilicate glass as sealant for sodium sulfur battery. Part 1: Thermophysical characteristics and structure[J]. Journal of Power Sources, 2010, 195(1): 384-388. |
110 | JUNG K, LEE S, KIM G, et al. Stress analyses for the glass joints of contemporary sodium sulfur batteries[J]. Journal of Power Sources, 2014, 269: 773-782. |
111 | SONG S, WEN Z, LIU Y, et al. Bi-doped borosilicate glass as sealant for sodium sulfur battery[J]. Journal of Non-Crystalline Solids, 2011, 357(16/17): 3074-3079. |
112 | SONG S, WEN Z, LIU Y, et al. New glass-ceramic sealants for Na/S battery[J]. Journal of Solid State Electrochemistry, 2010, 14(9): 1735-1740. |
113 | SONG S, WEN Z, LIU Y. Development and characterizations of Bi2O3-containing glass-ceramic sealants for sodium sulfur battery[J]. Journal of Non-Crystalline Solids, 2013, 375: 25-30. |
114 | HIRAI N. Method for controlling sodium-sulfur battery: US 8163407[P]. 2012-04-24. |
115 | JUNG K, LEE S, PARK Y C, et al. Finite element analysis study on the thermomechanical stability of thermal compression bonding (TCB) joints in tubular sodium sulfur cells[J]. Journal of Power Sources, 2014, 250: 1-14. |
116 | JUNG K, HEO H J, LEE J H, et al. Enhanced corrosion resistance of hypo-eutectic Al-1Mg-xSi alloys against molten sodium attack in high temperature sodium sulfur batteries[J]. Corrosion Science, 2015, 98: 748-757. |
117 | TISCHER R P. The sulphur electrode[M]. New York: Academic Press, 1983: 8-22. |
118 | HUANG Y, WEN Z, YANG J, et al. La0.8Sr0.2Co0.3Fe0.7O3-δ as a novel candidate coating material for the positive current collector in sodium sulfur battery[J]. Electrochimica Acta, 2010, 55(28): 8632-8637. |
119 | HIDAKA M, FURUTA K, SHIMIZU M, et al. Current collector of positive electrode and sodium-sulfur battery using the same: US6902842[P]. 2005-06-07. |
120 | HEUSLER K E, GRZEGORZEWSKI A, KNODLER R. Corrosion of metallic materials in sodium polysulfide[J]. Journal of the Electrochemical Society, 1993, 140(2): 426-431. |
121 | DUSTMANN C H, BITO A. Encyclopedia of electrochemical power sources[M]. Amsterdam: Elsevier, 2009: 324-333. |
122 | SCHAEFER S, VUDATA S P, BHATTACHARYYA D, et al. Transient modeling and simulation of a nonisothermal sodium-sulfur cell[J]. Journal of Power Sources, 2020, 453: doi: 10.1016/j.jpowsour.2020.227849. |
123 | LU X C, KIRBY B W, XU W, et al. Advanced intermediate-temperature Na-S battery[J]. Energy & Environmental Science, 2013, 6(1): 299-306. |
124 | ZHAN X, SEPULVEDA J P, LU X, et al. Elucidating the role of anionic chemistry towards high-rate intermediate-temperature Na-metal halide batteries[J]. Energy Storage Materials, 2020, 24: 177-187. |
125 | LU X C, CHANG H J, BONNETT J F, et al. An intermediate-temperature high-performance Na-ZnCl2 battery[J]. ACS Omega, 2018, 3(11): 15702-15708. |
126 | CHANG H J, LU X, BONNETT J F, et al. Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies[J]. Journal of Power Sources, 2017, 348: 150-157. |
127 | LI G, LU X, KIM J Y, et al. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms10683. |
128 | LI T, XU J, WANG C, et al. The latest advances in the critical factors (positive electrode, electrolytes, separators) for sodium-sulfur battery[J]. Journal of Alloys and Compounds, 2019, 792: 797-817. |
129 | YAO Y F, KUMMER J T. Ion exchange properties of and rates of ionic diffusion in beta-alumina[J]. Journal of Inorganic and Nuclear Chemistry, 1967, 29(1936): 2453-2475. |
130 | HEINZ M V F, GRAEBER G, LANDMANN D, et al. Pressure management and cell design in solid-electrolyte batteries, at the example of a sodium-nickel chloride battery[J]. Journal of Power Sources, 2020, 465: doi: 10.1016/j.jpowsour.2020.228268. |
131 | YANG F, MOUSAVIE S M A, OH T K, et al. Sodium-sulfur flow battery for low-cost electrical storage[J]. Advanced Energy Materials, 2018, 8(11): doi: 10.1002/aenm.201701991. |
132 | NIKIFORIDIS G, JONGERDEN G J, JONGERDEN E F, et al. An electrochemical study on the cathode of the intermediate temperature tubular sodium-sulfur (NaS) battery[J]. Journal of the Electrochemical Society, 2019, 166(2): A135-A142. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 曾伟, 熊俊杰, 李建林, 马速良, 武亦文. 基于权重自适应鲸鱼优化算法的多能系统储能电站最优配置[J]. 储能科学与技术, 2022, 11(7): 2241-2249. |
[4] | 韩健民, 薛飞宇, 梁双印, 乔天舒. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. |
[5] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[6] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[7] | 董树锋, 刘灵冲, 唐坤杰, 赵海祺, 徐成司, 林立亨. 基于Simulink和低代码控制器的储能控制实验教学方法[J]. 储能科学与技术, 2022, 11(7): 2386-2397. |
[8] | 郭雨涵, 郁丹, 杨鹏, 王子绩, 王金涛. 基于贪婪算法的分布式储能系统容量优化配置方法[J]. 储能科学与技术, 2022, 11(7): 2295-2304. |
[9] | 袁性忠, 胡斌, 郭凡, 严欢, 贾宏刚, 苏舟. 欧盟储能政策和市场规则及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2344-2353. |
[10] | 刘国静, 李冰洁, 胡晓燕, 岳芬, 徐际强. 澳大利亚储能相关政策与电力市场机制及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2332-2343. |
[11] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[12] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
[13] | 吴田, 林闽城, 海浩, 孙海渔, 温兆银, 马福元. 面向一次调频的镍氢电池系统开发[J]. 储能科学与技术, 2022, 11(7): 2213-2221. |
[14] | 徐光福, 姜淼, 王万纯, 魏阳, 侯炜. 大型储能电池短路故障分析与保护策略[J]. 储能科学与技术, 2022, 11(7): 2222-2232. |
[15] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||