1 |
STERN P C, SOVACOOL B K, DIETZ T. Towards a science of climate and energy choices[J]. Nature Climate Change, 2016, 6(6): 547-555.
|
2 |
CHENG F Y, CHEN J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6): 2172-2192.
|
3 |
KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews, 2018, 118(5): 2302-2312.
|
4 |
LUIS-SUNGA M, RODRIGUEZ J L, GARCIA G, et al. Oxygen electroreduction reaction at bidimensional materials. Current Opinion in Electrochemistry, 2020, 23:139-144.
|
5 |
LAH N A C. Late transition metal nanocomplexes: Applications for renewable energy conversion and storage[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111103.
|
6 |
NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.
|
7 |
GAO J J, YANG H B, HUANG X, et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst[J]. Chem, 2020, 6(3): 658-674.
|
8 |
HE W H, WANG Y, JIANG C H, LU L H. Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts[J]. Chemical Society Reviews, 2016, 45(9): 2396-2409.
|
9 |
GOGOTSI Y, ANASORI B. The rise of MXenes[J]. ACS Nano, 2019, 13(8): 8491-8494.
|
10 |
MOHAMMADI A V, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): 1165-1179.
|
11 |
YANG C Z, HUANG H J, HE H Y, et al. Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications[J]. Coordination Chemistry Reviews, 2021, 435: 213806.
|
12 |
GOGOTSI Y, HUANG Q. MXenes: two-dimensional building blocks for future materials and devices[J]. ACS Nano, 2021, 15(4): 5775-5780.
|
13 |
LIU Y T, ZHU X D, PAN L. Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: Methods, synergies, and energy-related applications[J]. Small, 2018, 14(51): e1803632.
|
14 |
WANG H J, FANG Q, GU W L, et al. Noble metal aerogels[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52234-52250.
|
15 |
WEI Y, SOOMRO R A, XIE X Q, et al. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes[J]. Journal of Energy Chemistry, 2021, 55: 244-255.
|
16 |
BU F X, ZAGHO M M, IBRAHIM Y, et al. Porous MXenes: Synthesis, structures, and applications[J]. Nano Today, 2020, 30: 100803.
|
17 |
JUNAIDI N H A, WONG W Y, LOH K S, et al. A comprehensive review of MXenes as catalyst supports for the oxygen reduction reaction in fuel cells MXenes as catalyst supports for the oxygen reduction reaction in fuel cells[J]. International Journal of Energy Research, 2021, 45(11): 15760-15782.
|
18 |
WANG W T, BATOOL N, ZHANG T H, et al. When MOFs meet MXenes: Superior ORR performance in both alkaline and acidic solutions[J]. Journal of Materials Chemistry A, 2021, 9(7): 3952-3960.
|
19 |
NAGUIB M, MASHTALIR O, LUKATSKAYA M R, et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes[J]. Chemical Communications, 2014, 50(56): 7420-7423.
|
20 |
CHEN C, XIE X Q, ANASORI B, et al. MoS2 -on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2018, 57(7): 1846-1850.
|
21 |
LIN H, CHEN L S, LU X Y, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China Materials, 2019, 62(5): 662-670.
|
22 |
LIU C Y, LI E Y. Termination effects of Pt/v-Tin+1CnT2 MXene surfaces for oxygen reduction reaction catalysis[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 1638-1644.
|
23 |
REGMI Y N, WAETZIG G R, DUFFEE K D, et al. Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials[J]. Journal of Materials Chemistry A, 2015, 3(18): 10085-10091.
|
24 |
HE L H, LIU J M, LIU Y K, et al. Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2019, 248: 366-379.
|
25 |
PARSE H, PATIL I M, SWAMI A S, et al. TiO2-decorated titanium carbide MXene co-doped with nitrogen and sulfur for oxygen electroreduction[J]. ACS Applied Nano Materials, 2021, 4(2): 1094-1103.
|
26 |
XUE Q, PEI Z X, HUANG Y, et al. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries[J]. Journal of Materials Chemistry A, 2017, 5(39): 20818-20823.
|
27 |
WANG X H, GONG X B, CHEN L, et al. Ti3C2 supported transition metal oxides and silver as catalysts toward efficient electricity generation in microbial fuel cells[J]. Catalysis Science & Technology, 2021, 11(14): 4823-4830.
|
28 |
PANG X, WU T, GU Y H, et al. Nb2Se2C: a new compound as a combination of transition metal dichalcogenide and MXene for oxygen evolution reaction[J]. Chemical Communications, 2020, 56(63): 9036-9039.
|
29 |
ZENG Z P, FU G T, YANG H B, et al. Bifunctional N-CoSe2/3D-MXene as highly efficient and durable cathode for rechargeable Zn-air battery[J]. ACS Materials Letters, 2019, 1(4): 432-439.
|
30 |
YANG X L, JIA Q J, DUAN F H, et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution[J]. Applied Surface Science, 2019, 464: 78-87.
|
31 |
WU Z H, WANG H, XIONG P, et al. Molecularly thin nitride sheets stabilized by titanium carbide as efficient bifunctional electrocatalysts for fiber-shaped rechargeable zinc-air batteries[J]. Nano Letters, 2020, 20(4): 2892-2898.
|
32 |
YU X L, YIN W C, WANG T, ZHANG Y H. Decorating g-C3N4 nanosheets with Ti3C2 MXene nanoparticles for efficient oxygen reduction reaction[J]. Langmuir, 2019, 35(8): 2909-2916.
|
33 |
JIANG L L, DUAN J J, ZHU J W, et al. Iron-cluster-directed synthesis of 2D/2D Fe-N-C/MXene superlattice-like heterostructure with enhanced oxygen reduction electrocatalysis[J]. ACS Nano, 2020, 14(2): 2436-2444.
|
34 |
XU C X, FAN C C, ZHANG X L, et al. MXene (Ti3C2Tx) and carbon nanotube hybrid-supported platinum catalysts for the high-performance oxygen reduction reaction in PEMFC[J]. ACS Applied Materials and Interfaces, 2020, 12(17): 19539-19546.
|
35 |
ZHANG Y K, JIANG H L, LIN Y X, et al. In situ growth of cobalt nanoparticles encapsulated nitrogen-doped carbon nanotubes among Ti3C2Tx(MXene) matrix for oxygen reduction and evolution[J]. Advanced Materials Interfaces, 2018, 5(16): 1800392.
|
36 |
CHEN J N, YUAN X L, LÜ F L, et al. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2019, 7(3): 1281-1286.
|
37 |
LEI Y H, TAN N, ZHU Y N, et al. Synthesis of Porous N-Rich Carbon/MXene from MXene@Polypyrrole Hybrid Nanosheets as Oxygen Reduction Reaction Electrocatalysts[J]. Journal of The Electrochemical Society, 2020, 167(11): 116503.
|
38 |
WANG R R, CHANG Z, FANG Z W, et al. Pt nanowire/Ti3C2Tx-CNT hybrids catalysts for the high performance oxygen reduction reaction for high temperature PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(52): 28190-28195.
|
39 |
ZHANG P, WANG R R, XIAO T, et al. The high-performance bifunctional catalyst Pd/Ti3C2Tx-carbon nanotube for oxygen reduction reaction and hydrogen evolution reaction in alkaline medium[J]. Energy Technology, 2020, 8(7): 2000306.
|
40 |
WEN Y Y, MA C, WEI Z T, et al. FeNC/MXene hybrid nanosheet as an efficient electrocatalyst for oxygen reduction reaction[J]. RSC Advances, 2019, 9(24): 13424-13430.
|
41 |
ZHOU S, YANG X W, PEI W, et al. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts[J]. Nanoscale, 2018, 10(23): 10876-10883.
|
42 |
XIU L Y, WANG Z Y, YU M Z, et al. Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting[J]. ACS Nano, 2018, 12(8): 8017-8028.
|
43 |
ZHANG X L, ZHANG Y Y, CHENG C, et al. Tuning the ORR activity of Pt-based Ti2CO2 MXenes by varying the atomic cluster size and doping with metals[J]. Nanoscale, 2020, 12(23): 12497-12507.
|
44 |
XIE X H, CHEN S G, DING W, et al. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X=OH, F) nanosheets for oxygen reduction reaction[J]. Chemical Communications, 2013, 49(86): 10112-10114.
|
45 |
ZHANG Z W, LI H N, ZOU G D, et al. Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6763-6771.
|
46 |
KHAZAEI M, RANJBAR A, ARAI M, et al. Electronic properties and applications of MXenes: A theoretical review[J]. Journal of Materials Chemistry C, 2017, 5(10): 2488-2503.
|
47 |
CHENG C, ZHANG X L, FU Z M, et al. Strong metal-support interactions impart activity in the oxygen reduction reaction: Au monolayer on Mo2C (MXene)[J]. Journal of Physics Condensed Matter, 2018, 30(47): 475201.
|
48 |
DUAN Z Y, WANG G F. A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M=Ni, Co, or Fe)[J]. Physical Chemistry Chemical Physics, 2011, 13(45): 20178-20187.
|
49 |
DUAN Z Y, WANG G F. Comparison of reaction energetics for oxygen reduction reactions on Pt(100), Pt(111), Pt/Ni(100), and Pt/Ni(111) surfaces: a first-principles study[J]. The Journal of Physical Chemistry C, 2013, 117(12): 6284-6292.
|
50 |
PENG Q, ZHOU J, CHEN J T, et al. Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell[J]. Journal of Materials Chemistry A, 2019, 7(45): 26062-26070.
|
51 |
SAHOO S K, YE Y, LEE S, et al. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions[J]. ACS Energy Letters, 2018, 4(1): 126-132.
|