储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 1931-1942.doi: 10.19799/j.cnki.2095-4239.2021.0148
韩婷婷(), 吴玉玺, 解子恒, 孟秀霞, 张津津, 解玉姣, 于方永(), 杨乃涛
收稿日期:
2021-04-08
修回日期:
2021-05-08
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
韩婷婷(1996—),女,硕士研究生,研究方向为固体氧化物燃料电池。E-mail:基金资助:
Tingting HAN(), Yuxi WU, Ziheng XIE, Xiuxia MENG, Jinjin ZHANG, Yujiao XIE, Fangyong YU(), Naitao YANG
Received:
2021-04-08
Revised:
2021-05-08
Online:
2021-11-05
Published:
2021-11-03
摘要:
固体氧化物燃料电池(solid oxide fuel cell,SOFC)是一种高效清洁的能量转化装置,具有效率高、环境友好、燃料适用灵活等突出优势,有望成为新一代清洁能源。当前,SOFC阳极使用最广的是镍基材料,这得益于其低成本、优异的化学稳定性和催化效果等优点。但是,当SOFC以碳氢化合物为燃料时,镍基阳极上会产生大量积碳,严重破坏阳极结构,进而影响电池性能和运行稳定性。因此,探究固体氧化物燃料电池镍基阳极积碳机理与改善方法具有重要的科学意义。基于近年来SOFC镍基阳极积碳过程的前沿研究,本文综述了SOFC镍基阳极积碳机理及各种积碳改善策略的最新研究进展,并从优化阳极材料组成和操作条件等方面归纳总结了几种SOFC阳极材料的研究现状和未来发展方向,以期为高性能SOFC阳极材料的开发提供有价值的参考。
中图分类号:
韩婷婷, 吴玉玺, 解子恒, 孟秀霞, 张津津, 解玉姣, 于方永, 杨乃涛. 固体氧化物燃料电池镍基阳极积碳机理及性能提升策略研究进展[J]. 储能科学与技术, 2021, 10(6): 1931-1942.
Tingting HAN, Yuxi WU, Ziheng XIE, Xiuxia MENG, Jinjin ZHANG, Yujiao XIE, Fangyong YU, Naitao YANG. Recent advances in carbon deposition mechanism and performance improvement of Ni-based anode for solid oxide fuel cells[J]. Energy Storage Science and Technology, 2021, 10(6): 1931-1942.
表1
不同阳极材料的SOFC电化学性能"
阳极 | 电解质/阴极 | 燃料 | 操作温度/℃ | 最大功率密度/(mW/cm2) | 稳定性 | 文献 |
---|---|---|---|---|---|---|
Ni-SDC/YSZ | YSZ/LSM-SDC | Methane | 700 | 400 | 0.5 V下超过80 h | [ |
Ni-ScSZ/YSZ | YSZ/LSM | 3% H2O-CH4 | 1000 | 850 | 1 A/cm2, 1000 ℃下超过250 h | [ |
Ni-Cu/YSZ | YSZ/LSM | Methane | 800 | 440 | 0.5 V下超过500 h | [ |
Ni-Sn/YSZ | YSZ/LSM | Wet methane | 800 | 1010 | 0.3 A/cm2, 650 ℃下超过120 h | [ |
5%BaO-Ni/YSZ | YSZ/LSM | Dry methane | 800 | 22 | 20 A/cm2下超过8 h | [ |
Au-Ni/GDC | YSZ/LSM-YSZ | CH4-rich Internal Steam | 850 | 410 | 0.81 V下超过200 h | [ |
Au-Mo-Ni/GDC | YSZ/LSM | 22 vol% H2O-CH4 | 800 | — | 57 A/cm2下超过140 h | [ |
Ni-GDC-NiMn2O4 | GDC/LSCF-GDC | CH4 | 700 | 1208 | 0.4 A/cm2, 650 ℃下超过100 h | [ |
Ni0.9Fe0.1/GDC | GDC/LSCF | Dry methane | 650 | 350 | 0.2 A/cm2下超过50 h | [ |
BaZr0.1Ce0.7Y0.1Yb0.1O3-δ | — | 3% H2O-CH4 | 750 | — | 1.02 V下超过24 h | [ |
La0.8Sr0.2Cr1-xRuxO3-δ-Gd0.1Ce0.9O1.9 | GDC/LSGM | H2 | 800 | 530 | 0.3 A/cm2下超过300 h | [ |
Ba(Ce0.9Y0.1)0.8Ni0.2O3-δ/Gd0.1Ce0.9O1.95 | GDC/LSCF-GDC | CH4 | 750 | 211 | 0.2 A/cm2下超过100 h | [ |
CeCoCu | YSZ-ScCeSc/LSM | Methane | 850 | 446.4 | — | [ |
CeO2-Ni-YSZ | YSZ/LSM-YSZ | Ethanol | 750 | 220 | 0.55 V下超过7 h | [ |
BaO-Ni-YSZ | YSZ/LSM-YSZ | Ethanol | 750 | 110 | 0.8 V下超过8 h | [ |
1 | CAO T, HUANG K, SHI Y X, et al. Recent advances in high-temperature carbon-air fuel cells[J]. Energy & Environmental Science, 2017, 10(2): 460-490. |
2 | SHABRI H A, OTHMAN M H D, MOHAMED M A, et al. Recent progress in metal-ceramic anode of solid oxide fuel cell for direct hydrocarbon fuel utilization: A review[J]. Fuel Processing Technology, 2021, 212: 106626. |
3 | LIU J, ZHOU M Y, ZHANG Y P, et al. Electrochemical oxidation of carbon at high temperature: Principles and applications[J]. Energy & Fuels, 2018, 32(4): 4107-4117. |
4 | YU F Y, HAN T T, WANG Z G, et al. Recent progress in direct carbon solid oxide fuel cell: Advanced anode catalysts, diversified carbon fuels, and heat management[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4283-4300. |
5 | GÜR T M. Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas[J]. Progress in Energy and Combustion Science, 2016, 54: 1-64. |
6 | WANG W, SU C, WU Y, et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chemical Reviews, 2013, 113(10): 8104-8151. |
7 | LIN Y B, ZHAN Z L, LIU J, et al. Direct operation of solid oxide fuel cells with methane fuel[J]. Solid State Ionics, 2005, 176(23/24): 1827-1835. |
8 | BARTHOLOMEW C H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212(1/2): 17-60. |
9 | LU H B, HUA D, IQABL T, et al. Molecular dynamics simulations of the coke formation progress on the nickel-based anode of solid oxide fuel cells[J]. International Communications in Heat and Mass Transfer, 2018, 91: 40-47. |
10 | LU H B, IQBAL T, ZHANG S Z, et al. Mechanical response of nickel-based anodes in solid oxide fuel cells during carbon deposition using reaction molecular dynamics[J]. International Communications in Heat and Mass Transfer, 2020, 117: 104787. |
11 | LI C, SHI Y X, CAI N S. Performance improvement of direct carbon fuel cell by introducing catalytic gasification process[J]. Journal of Power Sources, 2010, 195(15): 4660-4666. |
12 | LI C, SHI Y X, CAI N S. Mechanism for carbon direct electrochemical reactions in a solid oxide electrolyte direct carbon fuel cell[J]. Journal of Power Sources, 2011, 196(2): 754-763. |
13 | EIGENBRODT B C, POMFRET M B, STEINHURST D A, et al. Direct, in situ optical studies of Ni-YSZ anodes in solid oxide fuel cells operating with methanol and methane[J]. The Journal of Physical Chemistry C, 2011, 115(6): 2895-2903. |
14 | KIM Y, KIM J H, BAE J, et al. In situ analyses of carbon dissolution into Ni-YSZ anode materials[J]. The Journal of Physical Chemistry C, 2012, 116(24): 13281-13288. |
15 | PODYACHEVA O Y, ISMAGILOV Z R, SHALAGINA A E, et al. Structural changes in a nickel-copper catalyst during growth of nitrogen-containing carbon nanofibers by ethylene/ammonia decomposition[J]. Carbon, 2010, 48(10): 2792-2801. |
16 | SUN C W, SU R, CHEN J, et al. Carbon formation mechanism of C2H2 in Ni-based catalysts revealed by in situ electron microscopy and molecular dynamics simulations[J]. ACS Omega, 2019, 4(5): 8413-8420. |
17 | XIAO J, XIE Y M, LIU J, et al. Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels[J]. Journal of Power Sources, 2014, 268: 508-516. |
18 | XIAO J, XIE Y, ZHANG L, et al. The effect of carbon fiber growth on the deactivation of nickel-based anode for solid oxide fuel cells operated on methane[J]. ECS Transactions, 2013, 57(1): 2969-2976. |
19 | YU F Y, XIAO J, ZHANG Y P, et al. New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation[J]. Applied Energy, 2019, 256: 113910. |
20 | PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(6775): 265-267. |
21 | ALVARADO FLORES J J, ÁVALOS RODRÍGUEZ M L, ANDRADE ESPINOSA G, et al. Advances in the development of titanates for anodes in SOFC[J]. International Journal of Hydrogen Energy, 2019, 44(24): 12529-12542. |
22 | MURRAY E P, TSAI T, BARNETT S A. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400(6745): 649-651. |
23 | MATSUI T, EGUCHI K, SHIRAI K, et al. Redox-induced self-modification of cermet anodes of Ni-CeO2-based oxide for solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2017, 164(13): F1368-F1374. |
24 | ZHANG L S, GAO J F, TIAN R F, et al. Samaria-doped ceria modified Ni/YSZ anode for direct methane fuel in tubular solid oxide fuel cells by impregnation method[J]. Chinese Journal of Chemical Physics, 2009, 22(4): 429-434. |
25 | KIM H, LU C, WORRELL W L, et al. Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells[J]. Journal of the Electrochemical Society, 2002, 149(3): A247. |
26 | MIZUTANI Y, TAMURA M, KAWAI M, et al. Development of high-performance electrolyte in SOFC[J]. Solid State Ionics, 1994, 72: 271-275. |
27 | NOMURA K, MIZUTANI Y, KAWAI M, et al. Aging and Raman scattering study of scandia and yttria doped zirconia[J]. Solid State Ionics, 2000, 132(3/4): 235-239. |
28 | SUMI H, PUENGJINDA P, MUROYAMA H, et al. Effects of crystal Structure of yttria- and scandia-stabilized zirconia in nickel-based SOFC anodes on carbon deposition and oxidation behavior[J]. Journal of Power Sources, 2011, 196(15): 6048-6054. |
29 | SUMI H, UKAI K, MIZUTANI Y, et al. Performance of nickel-scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O-CH4[J]. Solid State Ionics, 2004, 174(1/2/3/4): 151-156. |
30 | LIN Y C, WEI W C J. Porous Cu-Ni-YSZ cermets using CH4 fuel for SOFC[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24253-24262. |
31 | KAN H, LEE H. Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC[J]. Applied Catalysis B: Environmental, 2010, 97(1/2): 108-114. |
32 | FARRELL B, LINIC S. Direct electrochemical oxidation of ethanol on SOFCs: Improved carbon tolerance of Ni anode by alloying[J]. Applied Catalysis B: Environmental, 2016, 183: 386-393. |
33 | HELVEG S, LÓPEZ-CARTES C, SEHESTED J, et al. Atomic-scale imaging of carbon nanofibre growth[J]. Nature, 2004, 427(6973): 426-429. |
34 | NIKOLLA E, HOLEWINSKI A, SCHWANK J, et al. Controlling carbon surface chemistry by alloying: Carbon tolerant reforming catalyst[J]. Journal of the American Chemical Society, 2006, 128(35): 11354-11355. |
35 | NIKOLLA E, SCHWANK J, LINIC S. Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: The impact of the formation of Ni alloy on chemistry[J]. Journal of Catalysis, 2009, 263(2): 220-227. |
36 | YANG L, CHOI Y, QIN W, et al. Promotion of water-mediated carbon removal by nanostructured Barium oxide/nickel interfaces in solid oxide fuel cells[J]. Nature Communications, 2011, 2: 357. |
37 | ISLAM S, HILL J M. Barium oxide promoted Ni/YSZ solid-oxide fuel cells for direct utilization of methane[J]. Journal of Materials Chemistry A, 2014, 2(6): 1922-1929. |
38 | NIAKOLAS D K, OUWELTJES J P, RIETVELD G, et al. Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming[J]. International Journal of Hydrogen Energy, 2010, 35(15): 7898-7904. |
39 | NEOFYTIDIS C, DRACOPOULOS V, NEOPHYTIDES S G, et al. Electrocatalytic performance and carbon tolerance of ternary Au-Mo-Ni/GDC SOFC anodes under CH4-rich Internal Steam Reforming conditions[J]. Catalysis Today, 2018, 310: 157-165. |
40 | LI Q, WANG X, JIA L, et al. High performance and carbon-deposition resistance metal-supported solid oxide fuel cell with a nickel-manganese spinel modified anode[J]. Materials Today Energy, 2020, 17: 100473. |
41 | KAN H, LEE H. Enhanced stability of Ni-Fe/GDC solid oxide fuel cell anodes for dry methane fuel[J]. Catalysis Communications, 2010, 12(1): 36-39. |
42 | WANG J B, JANG J C, HUANG T J. Study of Ni-Samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells[J]. Journal of Power Sources, 2003, 122(2): 122-131. |
43 | LI M, HUA B, JIANG S P, et al. BaZr0.1Ce0.7Y0.1Yb0.1O3-δ as highly active and carbon tolerant anode for direct hydrocarbon solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15975-15981. |
44 | TAO S W, IRVINE J T S. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nature Materials, 2003, 2(5): 320-323. |
45 | YANG C H, LI J, LIN Y, et al. In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells[J]. Nano Energy, 2015, 11: 704-710. |
46 | ZHANG P, GUAN G Q, KHAERUDINI D S, et al. Mechanisms of methane decomposition and carbon species oxidation on the Pr0.42Sr0.6Co0.2Fe0.7Nb0.1O3–σ electrode with high catalytic activity[J]. Journal of Materials Chemistry A, 2015, 3(45): 22816-22823. |
47 | LIU Y Y, JIA L C, LI J, et al. High-performance Ni in situ exsolved Ba(Ce0.9Y0.1)0.8Ni0.2O3–δ/Gd0.1Ce0.9O1.95 composite anode for SOFC with long-term stability in methane fuel[J]. Composites Part B: Engineering, 2020, 193: 108033. |
48 | LIU J, BARNETT S A. Operation of anode-supported solid oxide fuel cells on methane and natural gas[J]. Solid State Ionics, 2003, 158(1/2): 11-16. |
49 | ALZATE-RESTREPO V, HILL J M. Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane[J]. Applied Catalysis A: General, 2008, 342(1/2): 49-55. |
50 | KOH J H, YOO Y S, PARK J W, et al. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel[J]. Solid State Ionics, 2002, 149(3/4): 157-166. |
51 | HORITA T, YAMAJI K, KATO T, et al. Imaging of CH4 decomposition around the Ni/YSZ interfaces under anodic polarization[J]. Journal of Power Sources, 2005, 145(2): 133-138. |
52 | VAYENAS C G, BEBELIS S, NEOPHYTIDES S, et al. Non-faradaic electrochemical modification of catalytic activity in solid electrolyte cells[J]. Applied Physics A, 1989, 49(1): 95-103. |
53 | MCINTOSH S, GORTE R J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews, 2004, 104(10): 4845-4866. |
54 | 张雨舒. SOFC系统甲烷水蒸汽重整Ni基催化剂性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
ZHANG Y S. The Ni-based catalyst performance study for methane steam reforming in solid oxide fuel cell system[D]. Harbin: Harbin Institute of Technology, 2019. | |
55 | HAN Z Y, YANG Z B, HAN M F. Cell-protecting regeneration from anode carbon deposition using in situ produced oxygen and steam: A combined experimental and theoretical study[J]. Journal of Materials Science & Technology, 2018, 34(12): 2375-2383. |
56 | JIAO Y, ZHANG L Q, AN W T, et al. Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane[J]. Energy, 2016, 113: 432-443. |
57 | TRIMM D L. Catalysts for the control of coking during steam reforming[J]. Catalysis Today, 1999, 49(1/2/3): 3-10. |
58 | ARENA F, FRUSTERI F, PARMALIANA A. Alkali promotion of Ni/MgO catalysts[J]. Applied Catalysis A: General, 1999, 187(1): 127-140. |
59 | FRUSTERI F, ARENA F, CALOGERO G, et al. Potassium-enhanced stability of Ni/MgO catalysts in the dry-reforming of methane[J]. Catalysis Communications, 2001, 2(2): 49-56. |
60 | WANG Y H, LIU H M, XU B Q. Durable Ni/MgO catalysts for CO2 reforming of methane: Activity and metal-support interaction[J]. Journal of Molecular Catalysis A: Chemical, 2009, 299(1/2): 44-52. |
61 | LAY E, METCALFE C, KESLER O. The influence of incorporating MgO into Ni-based cermets by plasma spraying on anode microstructural and chemical stability in dry methane[J]. Journal of Power Sources, 2012, 218: 237-243. |
62 | HUA B, LI M, CHI B, et al. Enhanced electrochemical performance and carbon deposition resistance of Ni-YSZ anode of solid oxide fuel cells by in situ formed Ni-MnO layer for CH4 on-cell reforming[J]. Journal of Materials Chemistry A, 2014, 2(4): 1150-1158. |
63 | LI M, HUA B, PU J, et al. Electrochemical performance and carbon deposition resistance of M-BaZr0.1Ce0.7Y0.1Yb0.1O3–δ (M = Pd, Cu, Ni or NiCu) anodes for solid oxide fuel cells[J]. Scientific Reports, 2015, 5: 7667. |
64 | HUA B, LI M, LUO J L, et al. Carbon-resistant Ni-Zr0.92Y0.08O2–δ supported solid oxide fuel cells using Ni-Cu-Fe alloy cermet as on-cell reforming catalyst and mixed methane-steam as fuel[J]. Journal of Power Sources, 2016, 303: 340-346. |
65 | BABAEI A, ZHANG L, LIU E J, et al. Performance and carbon deposition over Pd nanoparticle catalyst promoted Ni/GDC anode of SOFCs in methane, methanol and ethanol fuels[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15301-15310. |
66 | WANG W, ZHU H Y, YANG G M, et al. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells[J]. Journal of Power Sources, 2014, 258: 134-141. |
67 | LI Z W, JIANG B, WANG Z G, et al. High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming[J]. Journal of CO2 Utilization, 2018, 27: 238-246. |
68 | SARRUF B J M, HONG J E, STEINBERGER-WILCKENS R, et al. Ceria-Co-Cu-based SOFC anode for direct utilisation of methane or ethanol as fuels[J]. International Journal of Hydrogen Energy, 2020, 45(8): 5297-5308. |
69 | 程亮, 罗凌虹, 林囿辰, 等. Ni/YSZ阳极浸渍CeO2及BaO对SOFC电池抗积碳的影响[J]. 陶瓷学报, 2017, 38(5): 746-751. |
CHENG L, LUO L H, LIN Y C, et al. Effect of Ni/YSZ anode impregnation on CeO2 and BaO on anti carbon deposition of SOFC[J]. Journal of Ceramics, 2017, 38(5): 746-751. |
[1] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[2] | 吴田, 林闽城, 海浩, 孙海渔, 温兆银, 马福元. 面向一次调频的镍氢电池系统开发[J]. 储能科学与技术, 2022, 11(7): 2213-2221. |
[3] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[4] | 李磊, 李钊, 姬丹, 牛慧昌. 过充电触发的LFP和NCM锂离子电池的热失控行为:差异与原因[J]. 储能科学与技术, 2022, 11(5): 1419-1427. |
[5] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性实验[J]. 储能科学与技术, 2022, 11(5): 1314-1321. |
[6] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性的数值研究[J]. 储能科学与技术, 2022, 11(1): 291-296. |
[7] | 郭志慧, 崔潇丹, 赵林双, 陈佳炜. 高镍三元锂离子电池火灾及气体爆炸危险性实验[J]. 储能科学与技术, 2022, 11(1): 193-200. |
[8] | 练文超, 雷励斌, 梁波, 王超, 魏磊, 田志鹏, 刘建平, 杨华政, 梁家健, 施涛. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007. |
[9] | 吴玉玺, 韩婷婷, 解子恒, 李琳, 宋艳雯, 梁加仓, 张津津, 于方永, 杨乃涛. 直接碳固体氧化物燃料电池研究进展:碳燃料和逆向Boudouard反应催化剂[J]. 储能科学与技术, 2021, 10(6): 1977-1986. |
[10] | 郑丽娜, 王文中, 贾凯杰, 邱少峰, 朱浩源, 于方永, 孟秀霞, 张津津, 杨乃涛. 3D打印技术在固体氧化物燃料电池领域的研究进展[J]. 储能科学与技术, 2021, 10(6): 1952-1962. |
[11] | 于旺, 孙超, 齐冀, 卞刘振, 彭继华, 彭军, 安胜利. 固体氧化物电池Sr2-xFe1.5Mo0.5O6-δ氧电极材料的电化学性能[J]. 储能科学与技术, 2021, 10(6): 2020-2027. |
[12] | 李萍萍, 陈姗姗, 赵璐璐, 史明亮, 黄岩, 李初福. 整体煤气化固体氧化物燃料电池并网测试系统设计[J]. 储能科学与技术, 2021, 10(6): 2039-2045. |
[13] | 韦守李, 李希超, 常修亮, 陈兵, 许卓, 张涛, 郑莉莉, 戴作强. 固体氧化物燃料电池双极板材料发展综述[J]. 储能科学与技术, 2021, 10(6): 1943-1951. |
[14] | 李夔宁, 谢运成, 谢翌, 白庆华, 郑锦涛. 基于电化学热耦合模型的富镍锂离子电池产热分析[J]. 储能科学与技术, 2021, 10(3): 1153-1162. |
[15] | 杨朝霞, 娄景媛, 李雪菁, 王涵文, 王柯忠, 尤东江. 锌镍单液流电池发展现状[J]. 储能科学与技术, 2020, 9(6): 1678-1690. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||