1 |
李倩, 赵彦云, 刘冰洁. 新能源产业政策的量化分析及其环保效应[J]. 北京理工大学学报(社会科学版), 2021, 23(4): 30-39.
|
|
LI Q, ZHAO Y Y, LIU B J. Quantitative analysis of new energy industry policy and its environmental protection effect[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(4): 30-39.
|
2 |
王志轩. 构建以新能源为主体的新型电力系统框架[J]. 阅江学刊, 2021, 13(3): 35-43.
|
|
WANG Z X. Construction of a new power system framework with new energy as the main body[J]. Yuejiang Academic Journal, 2021, 13(3): 35-43.
|
3 |
周圣哲. 燃料电池电动汽车能量管理系统控制策略研究[D]. 青岛: 青岛大学, 2019.
|
|
ZHOU S Z. Research on control strategy of energy management system for fuel cell electric vehicle[D]. Qingdao: Qingdao University, 2019.
|
4 |
CHAN C K, PENG H L, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.
|
5 |
PAN P, CHEN L H, WANG F, et al. Cu2NiSnS4 nanosphere array on carbon cloth as free-standing and binder-free electrodes for energy storage[J]. Electrochimica Acta, 2018, 260: 305-313.
|
6 |
畅波. 锂离子电池硅基复合负极材料的制备及其电化学性能的研究[D]. 太原: 太原理工大学, 2017.
|
|
CHANG B. Preparation and electrochemical performance of silicon-based composite anode materials for lithium-ion batteries[D]. Taiyuan: Taiyuan University of Technology, 2017.
|
7 |
闫琦, 兰元其, 姚文娇, 等. 聚阴离子型二次离子电池正极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 872-886.
|
|
YAN Q, LAN Y Q, YAO W J, et al. Recent development of polyanionic cathodes for second ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 872-886.
|
8 |
HE F, MA L. Thermal management in hybrid power systems using cylindrical and prismatic battery cells[J]. Heat Transfer Engineering, 2016, 37(6): 581-590.
|
9 |
AL-JAWFI Ibrahim, 赵佳琦, 师萌, 等. Al掺杂锰酸锂材料在水系锂离子电池中的循环稳定性[J]. 储能科学与技术, 2021, 10(4): 1330-1337.
|
|
ALJAWFI I, ZHAO J Q, SHI M, et al. High electrochemical stability of Al-doped spinel LiMn2O4 cathode material for aqueous lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1330-1337.
|
10 |
MAEDA K, NOGAMI M, ARAFUNE K, et al. Application of industrial crystallization model for charge-discharge cycle of lead-acid batteries at high pressure[J]. Journal of Chemical Engineering of Japan, 2015, 48(10): 815-820.
|
11 |
GALUSHKIN N, YAZVINSKAYA N, GALUSHKIN D, et al. Probability investigation of thermal runaway in nickel-cadmium batteries with sintered, pasted and pressed electrodes[J]. International Journal of Electrochemical Science, 2015, 10(8): 6645-6650.
|
12 |
周小龙, 欧学武, 刘齐荣, 等. 双离子电池研究进展[J]. 储能科学与技术, 2020, 9(2): 551-568.
|
|
ZHOU X L, OU X W, LIU Q R, et al. Research progress on dual-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 551-568.
|
13 |
ONO K. Energetically self-sustaining electric power generation system based on the combined cycle of electrostatic induction hydrogen electrolyzer and fuel cell[J]. Electrical Engineering in Japan, 2016, 195(1): 10-23.
|
14 |
KIM H, HONG J, PARK K Y, et al. Aqueous rechargeable Li and Na ion batteries[J]. Chemical Reviews, 2014, 114(23): 11788-11827.
|
15 |
LI Z, YOUNG D, XIANG K, et al. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system[J]. Advanced Energy Materials, 2013, 3: 290-294.
|
16 |
FUKUZUMI S. Production of liquid solar fuels and their use in fuel cells[J]. Joule, 2017, 1(4): 689-738.
|
17 |
ZHANG L Y, CHEN L, ZHOU X F, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system[J]. Advanced Energy Materials, 2015, 5(2): doi: 10.1002/aenm.201400930.
|
18 |
YAN J, WANG J, LIU H, et al. Rechargeable hybrid aqueous batteries[J]. Journal of Power Sources, 2012, 216: 222-226.
|
19 |
CHEN R J, LUO R, HUANG Y X, et al. Advanced high energy density secondary batteries with multi-electron reaction materials[J]. Advanced Science, 2016, 3(10): doi: 10.1002/advs.201600051.
|
20 |
WANG Y, ZHANG L J, ZHANG F, et al. High-performance Zn-graphite battery based on LiPF6 single-salt electrolyte with high working voltage and long cycling life[J]. Journal of Energy Chemistry, 2021, 58: 602-609.
|
21 |
LIU Z, CUI T, PULLETIKURTHI G, et al. Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries[J]. Angewandte Chemie, 2016, 55(8): 2889-2893.
|
22 |
MING J, GUO J, XIA C, et al. Zinc-ion batteries: Materials, mechanisms, and applications[J]. Materials Science and Engineering: R: Reports, 2019, 135: 58-84.
|
23 |
LI C, ZHENG C M, JIANG H L, et al. Conductive flower-like Ni-PTA-Mn as cathode for aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2021, 882: doi: 10.1016/j.jallcom.2021.160587.
|
24 |
XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angewandte Chemie, 2012, 51(4): 933-935.
|
25 |
ZHOU J L, YANG X L, ZHANG Y J, et al. Interconnected NiCo2O4 nanosheet arrays grown on carbon cloth as a host, adsorber and catalyst for sulfur species enabling high-performance Li-S batteries[J]. Nanoscale Advances, 2021, 3(6): 1690-1698.
|
26 |
HOUSEL L M, WANG L, ABRAHAM A, et al. Investigation of α-MnO2 tunneled structures as model cation hosts for energy storage[J]. Accounts of Chemical Research, 2018, 51(3): 575-582.
|
27 |
ZHANG N, CHENG F Y, LIU J X, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8: doi: 10.1038/s41467-017-00467-x.
|