1 |
林伯强. 中国能源发展报告2020[M]. 北京: 北京大学出版社, 2020.
|
|
LIN B Q. China energy outlook 2020[M]. Beijing: Peking University Press, 2020.
|
2 |
舟丹.太阳能发展利用进入新时期[J].中外能源, 2017, 22(7): 70.
|
|
ZHOU D. A new era of solar energy development and utilization[J]. Sino-Global Energy, 2017, 22(7): 70.
|
3 |
KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970.
|
4 |
太阳能光热联盟.深度解析太阳能光热储能独特的调峰调频作用[EB/OL]. [2021-10-06]. https://mp.weixin.qq.com/s/0vkjfEGAk5dukWscNZFjGg.
|
5 |
PALACIOS A, BARRENECHE C, NAVARRO M E, et al. Thermal energy storage technologies for concentrated solar power-A review from a materials perspective[J]. Renewable Energy, 2020, 156: 1244-1265.
|
6 |
CABEZA L F, DE GRACIA A, ZSEMBINSZKI G, et al. Perspectives on thermal energy storage research[J]. Energy, 2021, 231: doi: 10.1016/j.energy.2021.120943.
|
7 |
ZHANG Z Y, DING T, ZHOU Q, et al. A review of technologies and applications on versatile energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2021, 148: doi: 10.1016/j.rser. 2021.111263.
|
8 |
林俊光, 仇秋玲, 罗海华, 等. 熔盐储热技术的应用现状[J]. 上海电气技术, 2021, 14(2): 70-73.
|
|
LIN J G, QIU Q L, LUO H H, et al. Application status of molten salt heat storage technology[J]. Journal of Shanghai Electric Technology, 2021, 14(2): 70-73.
|
9 |
JIANG Y F, LIU M, SUN Y P. Review on the development of high temperature phase change material composites for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 203: doi: 10.1016/j.solmat.2019.110164.
|
10 |
ZHANG Y, WANG M, LI J L, et al. Improving thermal energy storage and transfer performance in solar energy storage: nanocomposite synthesized by dispersing nano boron nitride in solar salt[J]. Solar Energy Materials and Solar Cells, 2021, 232: doi: 10.1016/j.solmat. 2021.111378.
|
11 |
MEHRALI M, TEN ELSHOF J E, SHAHI M, et al. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material[J]. Chemical Engineering Journal, 2021, 405: doi: 10.1016/j.cej.2020.126624.
|
12 |
KUMAR N, GUPTA S K. Progress and application of phase change material in solar thermal energy: An overview[J]. Materials Today: Proceedings, 2021, 44: 271-281.
|
13 |
黄港, 邱玮. 相变储能材料的研究与发展[J/OL]. 材料科学与工艺: 1-14 [2021-09-15]. http://kns.cnki.net/kcms/detail/23.1345.TB.20210705. 1839.002.html.
|
14 |
王军涛, 徐芳, 韩海军. 三元体系NaNO3-KNO3-Ca(NO3)2相图预测及其热力学研究[J]. 太阳能学报, 2016, 37(5): 1262-1269.
|
|
WANG J T, XU F, HAN H J. Phase diagram prediction and thermodynamic properties of the ternary system Na NO3-KNO3-Ca(NO3)2[J]. Acta Energiae Solaris Sinica, 2016, 37(5): 1262-1269.
|
15 |
RAADE J W, PADOWITZ D. Development of molten salt heat transfer fluid with low melting point and high thermal stability[J]. Journal of Solar Energy Engineering, 2011, 133(3): doi: 10.1115/1.4004243.
|
16 |
JIANG Z, LENG G H, YE F, et al. Form-stable LiNO3-NaNO3-KNO3-Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage[J]. Energy Conversion and Management, 2015, 106: 165-172.
|
17 |
SANG L X, LI F, XU Y W. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage[J]. Solar Energy, 2019, 180: 1-7.
|
18 |
REN Y X, XU C, YUAN M D, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid-to high-temperature thermal energy storage[J]. Energy Conversion and Management, 2018, 163: 50-58.
|
19 |
LI Y, CHEN X, WU Y T, et al. Experimental study on the effect of SiO2 nanoparticle dispersion on the thermophysical properties of binary nitrate molten salt[J]. Solar Energy, 2019, 183: 776-781.
|
20 |
YE F, GE Z W, DING Y L, et al. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage[J]. Particuology, 2014, 15: 56-60.
|
21 |
邹露璐. 四元混合熔融盐的配方优选及蓄热系统的经济性分析[D]. 呼和浩特: 内蒙古工业大学, 2018.
|
|
ZOU L L. Formulation optimization of quaternary mixed molten salt and economic analysis of thermal storage system[D]. Hohhot: Inner Mongolia University of Tehchnology, 2018.
|
22 |
PINCEMIN S, OLIVES R, PY X, et al. Highly conductive composites made of phase change materials and graphite for thermal storage[J]. Solar Energy Materials and Solar Cells, 2008, 92(6): 603-613.
|
23 |
ROOJ S, DAS A, THAKUR V, et al. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes[J]. Materials & Design, 2010, 31(4): 2151-2156.
|
24 |
程志林, 孙伟. 埃洛石纳米硅铝管(HNTs)的结构和物理性能[J]. 石油学报(石油加工), 2016, 32(1): 150-155.
|
|
CHENG Z L, SUN W. Structure and physical properties of halloysite nanotubes[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(1): 150-155.
|
25 |
KLEMENS P G, PEDRAZA D F. Thermal conductivity of graphite in the basal plane[J]. Carbon, 1994, 32(4): 735-741.
|