1 |
ALI S, DESHMUKH S P. An overview: Applications of thermal energy storage using phase change materials[J]. Materials Today: Proceedings, 2020, 26: 1231-1237.
|
2 |
HAWES D W, FELDMAN D, BANU D. Latent heat storage in building materials[J]. Energy and Buildings, 1993, 20(1): 77-86.
|
3 |
WU S, LI T X, TONG Z, et al. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting[J]. Advanced Materials, 2019, 31(49): doi: 10.1002/adma.201905099.
|
4 |
HAN G S, DING H S, HUANG Y, et al. A comparative study on the performances of different shell-and-tube type latent heat thermal energy storage units including the effects of natural convection[J]. International Communications in Heat and Mass Transfer, 2017, 88: 228-235.
|
5 |
DENHOLM P, MARGOLIS R M. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies[J]. Energy Policy, 2007, 35(9): 4424-4433.
|
6 |
GIOVANNELLI A, BASHIR M A. Development of a solar cavity receiver with a short-term storage system[J]. Energy Procedia, 2017, 136: 258-263.
|
7 |
BASHIR M A, GIOVANNELLI A, AMBER K P, et al. High-temperature phase change materials for short-term thermal energy storage in the solar receiver: Selection and analysis[J]. Journal of Energy Storage, 2020, 30: doi: 10.1016/j.est.2020.101496.
|
8 |
QI L, LIN C, et al. Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 211: doi:10.1016/j.solmat.2020.110511.
|
9 |
YAWS C L. Thermophysical properties of chemicals and hydrocarbons[M]. Lin Sy-Chyl, Norwich, NY, William Andrew Publishing, 2009: 592-596.
|
10 |
HUANG Y, DUAN J, et al. Lithium metal-based composite: An emerging material for next-generation batteries[J]. Matter, 2020, 3(4): 1009-1030.
|
11 |
赵国立, 许莹, 蔡艳青, 等. 难熔金属含氧酸盐短流程熔盐电解制备金属单质及合金的研究进展[J]. 中国有色冶金, 2021, 50(3): 53-62.
|
|
ZHAO G L, XU Y, CAI Y Q, et al. Research progress and preparation of metal element and alloy from refractory metal oxoate by short flow molten salt electrolysis[J]. China Nonferrous Metallurgy, 2021, 50(3): 53-62.
|
12 |
孔令刚. 镍、钴金属及其磷化物修饰的复合光催化剂——光化学制备、性能和机理[D]. 无锡: 江南大学, 2017.
|
|
KONG L G. Photocatalyst modified with Ni, Co and their phosphides—Photechemical synthesis, performance and mechanism[D]. Wuxi: Jiangnan University, 2017.
|
13 |
郑春宇. 生物氧化提金废液中单质砷的回收及高值化利用研究[D]. 沈阳: 东北大学, 2010.
|
|
ZHENG C Y. Investigation on arsenic recovery and value-added utilization from arsenic waste water[D]. Shenyang: Northeastern University, 2010.
|
14 |
FERNANDEZ V. Assessing cycles of mine production and prices of industrial metals[J]. Resources Policy, 2019, 63: doi: 10.1016/j.resourpol.2019.101405.
|
15 |
罗文来. 金属粉末价格变化与金刚石工具面临的新挑战[J]. 工业金刚石, 2005(3): 37-40.
|
16 |
2017年中国钛工业发展报告[J].中国金属通报, 2018(6): 1-4.
|
|
2017 China titanium industry development report[J]. China Metal Bulletin, 2018 (6): 1-4
|
17 |
李巧凤. 金属镁市场价格涨幅明显[J]. 铸造技术, 2010(12): 1535-1536.
|
18 |
李斌. 有色金属: 阶段反弹可期[J]. 股市动态分析, 2017(46): 12.
|
19 |
供不应求致金属铬价大涨 后期有望继续上行[J]. 铁合金, 2015, 46(8): 23.
|
20 |
编辑部. 2005年钒铁生产总体回顾及2006年展望[J]. 矿业快报, 2006(2): 67-68.
|
21 |
王钊越. 金属锂的应用及其市场[J]. 新疆有色金属, 2018, 41(S1): 56-58.
|
22 |
肖俊清. 通威股份:硅料价格开涨 H2竞价项目超预期[J]. 股市动态分析, 2020(15): 42-43.
|
23 |
编辑部. 粉体产业前瞻预测[J]. 中国粉体工业, 2020(1): 57-60.
|
24 |
DARVISHI KAMACHALI R, WANG L. Elastic energy of multi-component solid solutions and strain origins of phase stability in high-entropy alloys[J]. Scripta Materialia, 2022, 206: doi: 10.1016/j.scriptamat.2021.114226.
|
25 |
MIEDEMA A R, DE CHÂTEL P F, DE BOER F R. Cohesion in alloys—Fundamentals of a semi-empirical model[J]. Physica B+C, 1980, 100(1): 1-28.
|
26 |
WANG Z Y, WANG H, LI X B, et al. Aluminum and silicon based phase change materials for high capacity thermal energy storage[J]. Applied Thermal Engineering, 2015, 89: 204-208.
|
27 |
COSTA S C, KENISARIN M. A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges[J]. Renewable and Sustainable Energy Reviews, 2022, 154: doi: 10.1016/j.rser.2021.111812.
|
28 |
程晓敏, 何高, 吴兴文. 铝基合金储热材料在太阳能热发电中的应用及研究进展[J]. 材料导报, 2010, 24(17): 139-143.
|
|
CHENG X M, HE G, WU X W. Application and research progress of aluminum-based thermal storage materials in solar thermal power[J]. Materials Review, 2010, 24(17): 139-143.
|
29 |
LIU M, SAMAN W, BRUNO F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2118-2132.
|
30 |
CÁRDENAS B, LEÓN N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 724-737.
|
31 |
ALVA G, LIU L K, HUANG X, et al. Thermal energy storage materials and systems for solar energy applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 693-706.
|
32 |
CABEZA L F, CASTELL A, BARRENECHE C, et al. Materials used as PCM in thermal energy storage in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1675-1695.
|
33 |
WEI G S, HUANG P R, XU C, et al. Thermophysical property measurements and thermal energy storage capacity analysis of aluminum alloys[J]. Solar Energy, 2016, 137: 66-72.
|
34 |
KHADIRAN T, HUSSEIN M Z, ZAINAL Z, et al. Advanced energy storage materials for building applications and their thermal performance characterization: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 916-928.
|
35 |
DAIKOKU H, KAWANISHI S, ISHIKAWA T, et al. Density, surface tension, and viscosity of liquid Si-Cr alloys and influence on temperature and fluid flow during solution growth of SiC[J]. The Journal of Chemical Thermodynamics, 2021, 160: doi: 10.1016/j.jct.2021.106476.
|
36 |
刘婷婷. 短石墨纤维/铝电子封装材料的制备与性能研究[D]. 北京: 北京科技大学, 2015.
|
|
LIU T T. Research on preparation and performance of short graphite fiber/Al electronic packaging material[D]. Beijing: University of Science and Technology Beijing, 2015.
|
37 |
苏喜平, 杜爱兵, 韩晓辉, 等. 快堆控制棒组件用高富集度碳化硼芯块的热物理性能研究[J]. 山东陶瓷, 2015, 38(4): 3-5.
|
|
SU X P, DU A B, HAN X H, et al. Study on thermophysical properties of B4C pellets used as control material in fast reactor[J]. Shandong Ceramics, 2015, 38(4): 3-5.
|
38 |
程心雨, 刘荣正, 刘马林, 等. 碳化物陶瓷材料在核反应堆领域应用现状[J]. 科学通报, 2021, 66(24): 3154-3170.
|
|
CHENG X Y, LIU R Z, LIU M L, et al. Applications of carbide ceramics in nuclear reactors[J]. Chinese Science Bulletin, 2021, 66(24): 3154-3170.
|
39 |
BECKER W T. ASM metals hand book volume 3-alloy phase diagrams[M]. ASM International, 1992.
|
40 |
SAHA P K, MAZUMDER A, MUKHERJEE G D. Thermal conductivity of dense hcp iron: Direct measurements using laser heated diamond anvil cell[J]. Geoscience Frontiers, 2020, 11(5): 1755-1761.
|
41 |
ŘEHÁČKOVÁ L, NOVÁK V, SMETANA B, et al. Possibilities of complex experimental study of thermophysical and thermodynamic properties of selected steels[J]. Journal of Materials Research and Technology, 2019, 8(4): 3635-3643.
|
42 |
LI M, BROOKS J A, ATTERIDGE D G, et al. Thermophysical property measurements on low alloy high strength carbon steels[J]. Scripta Materialia, 1997, 36(12): 1353-1359.
|
43 |
FILIPI B. Materials science[M]. Fire and Security Engineering Association, 2003.
|
44 |
BHADESHIA H, HONEYCOMBE R. Steels (Third edition)[M]. Oxford: Butterworth-Heinemann,2006.
|